Answer:
<h3>1.43m/s²</h3>
Explanation:
According to newtons second law.
F = mass * acceleration
If the doll has a mass of 0.2 kg, and the robot has a mass of 0.5 kg, the resulting mass will be 0.7kg
Force applied = 1N
acceleration = Force/mass
Substitute the values and get acceleration
acceleration = 1/0.7
acceleration = 1.43m/s²
Hence the magnitude of the acceleration of the robot is 1.43m/s²
A vector has a size and a direction. The size is called the magnitude of the vector.
Answer:
R=100 Ohm, V=11.97 volts and I=0.12 amperes
R=10 Ohm, V=10.25 volts and I=1.20 amperes
R=2 Ohm, V=6.26 volts
Explanation:
The potential difference (voltage) of a battery with internal resistance is:
(1)
with
the electromotive force (the voltage the batteries say to has) , I the current and r the internal resistance. By Ohm's law the current that passes through the resistor is:
(2)
using (2) on (1):

solving for V:

(3)
R=100 Ohm

R=10 Ohm

R=2 Ohm

Because we have now the values of I on the circuit (is the same through all the components because is a series circuit)
We use back substitution on (1) to find the current:
R=100 Ohm

R=10 Ohm

To resolve these forces we have to make use of the sines and cosines.
To resolve this force in 30 degree north of west, the answer will be
100*sin(30)
The answer will be 50N
Now to resolve the force acting 60 degree north of east
100* cos(60)
The answer will be 50N.
This also adds to the total force acting that is 50+50=100N. This is the way forces are resolved according to their specified angles.