The best answer I think is D) it’s the best one
Answer: One of the units used to measure incident energy is calories per centimeter squared (cal/cm2).
Explanation: Incident energy this is defined as the amount of thermal energy impressed on a surface, at a certain distance from the source, generated during an electrical arc event.
The working distance is the distance from where the worker stands to the source location. The most common distance for which incident energy has been determined in tests is 18 inches.
Answer:
Explanation:
a )
Pressure on the bottom
= hdg
= 2.5 x 820 x 9.8
= 20090 N / m²
b )
force = area x pressure
= 20090 x 10 x 6 N
= 1205400 N
c )
Force on 10m x 2.5 m face
center of gravity of the tank will lie at height 2 .5 / 2 = 1.25 m
Pressure = hdg
= 1.25 x 820 x 9.8
= 10045 N/m²
force = pressure x area
= 10045 x 10 x 2.5
= 251125 N .
Answer:
an atom is about a trillion times smaller then a speck of dust.
Explanation:
hope this helps :)
<h2>
Answer:</h2>
800gm
<h2>
Explanation:</h2>
Archimedes principle states that when an object is immersed in a liquid there is an apparent loss of weight of the object. This apparent loss of weight is also the upthrust experienced by the liquid. The upthrust is equal to the weight of the liquid displaced.
Following from the above statement, when the body of volume 100c.c is immersed in the water contained in the jar, the upthrust experienced is equal to the weight of the water displaced.
<em>Note: In the question, weight is measured just using the mass.</em>
Mass (m) is the product of density (ρ) of liquid (which is water in this case) and volume (v) of body immersed. i.e
m = ρ x v
Where;
ρ = 1 gm/cm³
v = 100c.c = 100cm³
=> m = 1 gm/cm³ x 100cm³
=> m = 100gm
Therefore the weight of water displaced is 100gm
Now, the weight of the water and jar after immersion is the sum of the weight of water and jar before immersion, and the weight of the water displaced. i.e
Weight of water and jar after immersion = 700gm + 100gm = 800gm