Acceleration = (0.2 x g) = 1.96m/sec^2.
<span>Accelerating force on 1kg. = (ma) = 1.96N. </span>
<span>1kg. has a weight (normal force) of 9.8N. </span>
<span>Coefficient µ = 1.96/9.8 = 0.2 minimum. </span>
<span>Coefficient is a ratio, so holds true for any value of mass to find accelerating force acting. </span>
<span>e.g. 75kg = (75 x g) = 735N. </span>
<span>Accelerating force = (735 x 0.2) = 147N</span>
Answer:
6.3445×10⁻¹⁶ m
Explanation:
E = Accelerating voltage = 2.47×10³ V
m = Mass of electron
Distance electron travels = 33.5 cm = 0.335 cm

Deflection by Earth's Gravity

Now, Time = Distance/Velocity

∴ Magnitude of the deflection on the screen caused by the Earth's gravitational field is 6.3445×10⁻¹⁶ m
Answer: 0.512 kgm²
Explanation:
Given
Force, F = 2*10^3 N
Angular acceleration, α = 121 rad/s²
Lever arm, r(⊥) = 3.1 cm = 3.1*10^-2 m
τ = r(⊥) * F
Also,
τ = Iα
Using the first equation, we have
τ = r(⊥) * F
τ = 0.031 * 2*10^3
τ = 62 Nm
Now we calculate for the inertia using the second equation
τ = Iα, making I subject of formula, we have
I = τ / α, on substituting, we have
I = 62 / 121
I = 0.512 kgm²
Thus, the moment of inertia of the boxers forearm is 0.512 kgm²
Runner A because they completed it in a less amount of time