Answer:
P=1/42.
Step-by-step explanation:
We know that the student council has 10 members where 5 of the members are Seniors. They need to choose a President, Vice President, Secretary and Treasurer. We calculate the probability that the President is a Senior:
We calculate the number of possible combinations:

Number of favorable combinations is 5.
Threfore, the probability is
P=5/210
P=1/42.
Answer:
Step-by-step explanation:
Corresponding scores before and after taking the course form matched pairs.
The data for the test are the differences between the scores before and after taking the course.
μd = scores before taking the course minus scores before taking the course.
a) For the null hypothesis
H0: μd ≥ 0
For the alternative hypothesis
H1: μd < 0
b) We would assume a significance level of 0.05. The P-value from the test is 0.65. The p value is high. It increases the possibility of accepting the null hypothesis.
Since alpha, 0.05 < than the p value, 0.65, then we would fail to reject the null hypothesis. Therefore, it does not provide enough evidence that scores after the course are greater than the scores before the course.
c) The mean difference for the sample scores is greater than or equal to zero
240 = 2 × 120
120 = 2 × 60
60 = 2 × 30
30 = 2 × 15
15 = 3 × 5
The 2, 2, 2, 2, 3 and 5 are all the prime factors of 240. So, 2^4 × 3 × 5
1500 = 3 × 500
500 = 5 × 100
100 = 5 × 20
20= 5 × 4
4 = 2 × 2
The 3, 5, 5, 5, 2 and 2 are all the prime factors of 1500. So, 2² + 3 + 5³
ln 5
e = ?
x
Keep in mind that y=e and y = ln x are inverse functions of one another.
ln 5
e , we can drop both the "e" and the "ln 5." We are left with 5 (answer).
ln 5
Alternatively, we could take the ln of both sides of y = e
which will result in ln y = (ln 5) ln e. Note that ln e = 1 (these two functions are inverses of one another).
Then we are left with ln y = ln 5. Dropping the "ln" operator from both sides,
y=5 (same as before).
I think it’s the third option