<span>This example represents the challenge of survival of the fittest. In this situation, the trees have a distinct advantage due to their above average height. This puts them in the best position to gain the resources that they need to survive, most notably, the sun. The smaller plants, however, do not have this advantage, and lose out to the trees.</span>
Answer:
Forces between similar molecules are said to be <em>cohesive</em> while those between different types of molecules are said to be <em>adhesive</em>.
Water 'beads' due to its strong <em>cohesive</em> forces. The meniscus of water in a glass tube is <em>concave</em> because the <em>adhesive</em> forces are strong.
Explanation:
The water in a tube has stronger adhesive forces between the water and glass molecules, so the cohesive forces between water molecules are weaker. That makes the water 'ascend' through the tube, giving a concave form of the meniscus. Another example is mercury, which is the opposite. In this case, the cohesive forces are stronger than the adhesive ones, thus the meniscus is convex.
Answer:
A3+ and B-
Explanation:
Elements in group 13 have outermost electron configuration, ns2np1 hence they form trivalent positive ions.
Elements in group 17 have outermost electron configuration ns2np5 hence they form univalent negative ions.
This implies that, if element A is in Group 13 and element B is in Group 17, the ions formed are A3+ and B-.
Answer : The correct expression for equilibrium constant will be:
![K_c=\frac{[C]^8}{[A]^4[B]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BC%5D%5E8%7D%7B%5BA%5D%5E4%5BB%5D%5E2%7D)
Explanation :
Equilibrium constant : It is defined as the equilibrium constant. It is defined as the ratio of concentration of products to the concentration of reactants.
The equilibrium expression for the reaction is determined by multiplying the concentrations of products and divided by the concentrations of the reactants and each concentration is raised to the power that is equal to the coefficient in the balanced reaction.
As we know that the concentrations of pure solids and liquids are constant that is they do not change. Thus, they are not included in the equilibrium expression.
The given equilibrium reaction is,

The expression of
will be,
![K_c=\frac{[C]^8}{[A]^4[B]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BC%5D%5E8%7D%7B%5BA%5D%5E4%5BB%5D%5E2%7D)
Therefore, the correct expression for equilibrium constant will be, ![K_c=\frac{[C]^8}{[A]^4[B]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BC%5D%5E8%7D%7B%5BA%5D%5E4%5BB%5D%5E2%7D)