Answer:
The correct solution will be "12.0 A".
Explanation:
The given values are:



By using the transformer formula, we get
⇒ 
⇒ 
On substituting the given values, we get
⇒ 
⇒ 
<span>If two wheels are exactly the same but spin at different speeds, wheel b is twice te speed of wheel a, it is possible to find the ratio of the magnitude of radial acceleration at a singular point of the rim on wheel be to the spot is four.</span>
Answer:
4 hoop, disk, sphere
Explanation:
Because
We are given data that
Hoop, disk, sphere have Same mass and radius
So let
And Initial angular velocity, = 0
The Force on each be F
And Time = t
Also let
Radius of each = r
So let's find the inertia shall we!!
I1 = m r² /2
= 0.5 mr² the his is for dis
I2 = m r² for hoop
And
Moment of inertia of sphere wiil be
I3 = (2/5) mr²
= 0.4 mr²
So
ωf = ωi + α t
= 0 + ( τ / I ) t
= ( F r / I ) t
So we can see that
ωf is inversely proportional to moment of inertia.
And so we take the
Order of I ( least to greatest ) :
I3 (sphere) , I1 (disk) , I2 (hoop) , ,
Order of ωf: ( least to greatest)
That of omega xf is the reverse of inertial so
hoop, disk, sphere
Option - 4
The best and most correct answer among the choices provided by your question is the fourth option or letter D. Trade winds blow towards the equator because t<span>he Equator receives the most heat energy.
</span>The surface air that flows from these subtropical high-pressure belts toward the Equator is deflected toward the west in both hemispheres by the Coriolis effect. These winds blow<span> predominantly from the northeast in the Northern Hemisphere and from the southeast in the Southern Hemisphere.
I hope my answer has come to your help. Thank you for posting your question here in Brainly.
</span>
If she has a choice and the wiring details are stated on the packaging,
then Janelle should look for lights that are wired in parallel within the
string, and she should avoid lights that are wired in series within the string.
If a single light in a parallel string fails, then only that one goes out.
The rest of the lights in the string continue to shimmer and glimmer.
If a single light in a series string fails, then ALL of the lights in that string
go out, and it's a substantial engineering challenge to determine which light
actually failed.