Answer:
0.45 seconds
Explanation:
Letting the value of g = 10 m/s/s
final velocity (v) = 0 m/s (since the egg will come to rest at the maximum height)
initial velocity(u) = 4.5 m/s
acceleration = -10 m/s/s (since the gravity is acting against the egg)
time = t seconds
From the first equation of motion:
<em>v = u + at</em>
<em>0 = 4.5 + (-10)t</em>
<em>t = -4.5 / -10</em>
t = 0.45 seconds
The situation is impossible mainly because we can't see Figure P6.10 .
It would undoubtedly be the same story on an another planet, until we
see the figure and understand what's going on.
Answer:
(a) 43.2 kC
(b) 0.012V kWh
(c) 0.108V cents
Explanation:
<u>Given:</u>
- i = current flow = 3 A
- t = time interval for which the current flow =

- V = terminal voltage of the battery
- R = rate of energy = 9 cents/kWh
<u>Assume:</u>
- Q = charge transported as a result of charging
- E = energy expended
- C = cost of charging
Part (a):
We know that the charge flow rate is the electric current flow through a wire.

Hence, 43.2 kC of charge is transported as a result of charging.
Part (b):
We know the electrical energy dissipated due to current flow across a voltage drop for a time interval is given by:

Hence, 0.012V kWh is expended in charging the battery.
Part (c):
We know that the energy cost is equal to the product of energy expended and the rate of energy.

Hence, 0.108V cents is the charging cost of the battery.
Force = (mass) · (acceleration)
= (1,000 kg) · (9.8 m/s²)
= 9,800 newtons
Why are you still having a problem with F = M · a ?