Some metals having unpaired electrons contain a strong magnetic response, i.e, they can be magnetized by an external magnetic field.
Answer:
a) The magnitude of the magnetic field = 7.1 mT
b) The direction of the magnetic field is the +z direction.
Explanation:
The force, F on a current carrying wire of current I, and length, L, that passes through a magnetic field B at an angle θ to the flow of current is given by
F = (B)(I)(L) sin θ
F/L = (B)(I) sin θ
For this question,
(F/L) = 0.113 N/m
B = ?
I = 16.0 A
θ = 90°
0.113 = B × 16 × sin 90°
B = 0.113/16 = 0.0071 T = 7.1 mT
b) The direction of the magnetic field will be found using the right hand rule.
The right hand rule uses the first three fingers on the right hand (the thumb, the pointing finger and the middle finger) and it predicts correctly that for current carrying wires, the thumb is in the direction the wire is pushed (direction of the force; -y direction), the pointing finger is in the direction the current is flowing (+x direction), and the middle finger is in the direction of the magnetic field (hence, +z direction).
Gravitational potential energy can be calculated using the formula <span>PE = m × g × h, where g is the gravitational acceleration and is constant hence the energy is dependent directly to mass and the height of the object. Hence more PE is registered when the object is heavier and/or at greater initial height. </span>
In a moving car the outside looks to be moving. however if viewed from the outside, the car appears to be moving. so motion is relative to the person observing.
Answer:
b. electric potential energy.
Explanation:
The energy required to move a charge against the electric field is known as the electric potential energy. As in above case positively charged body is exerting an electric field on the positive charge. As the same charges repel so the charge tend to move away. In order to push it towards the body we need a work done. As it is hard to push the positive charged particle towards the positive electric field. So in the cases like these particle occupies the electric potential energy.