Bodies in space traveled in circles.
The planets revolved around the Earth.
If we consider our origin to be zero then if we walk 15m west then back 7m east our displacement would be the difference (since west and east are opposite directions to one another).
15m - 7m = 8m
And so, we are 8 meters away from our origin, thus our displacement is 8 meters.
<u>Answer</u>
5) b-c
6) a-b and
e-f
7) f-g
9) a-b = 0 m/s
c-d = 0.6667 m/s
e-f = 0 m/s
f-g = -3 m/s
10) b-c ⇒ The cart is acceleration.
e-f ⇒ The cart is moving backwards with a constant velocity.
<u>Explanation</u>
Answer
5) b-c
In the section b-c the cart is accelerating because the slope of the graph is changing. The gradient that represent velocity is increasing.
6) a-b and e-f
At this sections the distance is not changing at all. This can only mean that the cart is not moving. It is at rest.
7) f-g
At this section the slope is negative meaning the cart is moving back to where it came from.
9) a-b = 0 m/s
At a-b the cart is not moving. So the velocity is zero.
<u> c-d = 0.66667 m/s</u>
Velocity = distance / time
=(50-40)/(40-25)
= 10/15
= 0.6667 m/s
<u> e-f = 0 m/s</u>
At e-f the cart is not moving. So the velocity is zero.
<u> f-g = -3 m/s</u>
Velocity = distance / time
= (60-30)/(65-75)
= 30/-10
= - 3 m/s
10) b-c ⇒ The cart is acceleration.
e-f ⇒ The cart is moving backwards with a constant velocity.
Answer:
X = 2146.05 m
Explanation:
We need to understand first what is the value we need to calculate here. In this case, we want to know how far from the starting point the package should be released. This is the distance.
We also know that the plane is flying a certain height with an specific speed. And the distance we need to calculate is the distance in X with the following expression:
X = Vt (1)
However we do not know the time that this distance is covered. This time can be determined because we know the height of the plain. This time is referred to the time of flight. And the time of flight can be calculated with the following expression:
t = √2h/g (2)
Where g is gravity acceleration which is 9.8 m/s². Replacing the data into the expression we have:
t = √(2*2500)/9.8
t = 22.59 s
Now replacing into (1) we have:
X = 95 * 22.59
<h2>
X = 2146.05 m</h2>
This is the distance where the package should be released.
Hope this helps