Answer:
As the capacitor is discharging, the current is increasing
Explanation:
Lets take
C= Capacitance
L=Inductance
V=Voltage
I= Current
The total energy E given as

We know that total energy E is conserved so when electric energy 1/2 CV² decreases then magnetic energy 1/2 IL² will increases.
It means that when charge on the capacitor decreases then the current will increase.
As the capacitor is discharging, the current is increasing
Answer: 96N
Explanation:
To calculate the velocity of the impact On the persons head, we have
h = gt²/2
14 = 9.81t²/2
t² = 28/9.8
t² = 2.86
t = 1.69s
V = u + at
V = 0 + 9.81*1.69
V = 16.58m/s
a(average) = (v1² + v2²) /2Δy
a(average) = 16.58² + 0)/2 * 0.005
a(average) = 274.8964/0.01
a(average) = 27489.64m/s²
Using newton's second law of motion,
F(average) = m * a(average)
F(average) = 0.0035 * 27489.64
F(average) = 96.21N
Therefore the force needed by the acorn to do much damage starts from 96N
<span>A.) If a sideways force of 300 N is applied to the motor, how far will it move sideways?</span>
Answer:
1.6 m/s^2
Explanation:
Hello!
To calculate the acceleration we must know the electric field. The electric field and the potential are related by:

If the particle starts at 2.3m, the electric field is:
E = 36.869 V/m = 36.869 N/C
So, the force on the particle is:
F = q E = 2.3×10^−6 C * 36.869 N/C = 8.48 x 10^-5 N
And its acceleration is :
a = F/m = 8.48 x 10^-5 N / 5.4×10−5 kg = 1.57 m/s^2
Rounded to two significant figures:
1.6 m/s^2