Answer:
(a) The normal freezing point of water (J·K−1·mol−1) is
(b) The normal boiling point of water (J·K−1·mol−1) is 
(c) the chemical potential of water supercooled to −5.0°C exceed that of ice at that temperature is 109J/mole
Explanation:
Lets calculate
(a) - General equation -
=
= 
→ phases
ΔH → enthalpy of transition
T → temperature transition
=
=
(
is the enthalpy of fusion of water)
= 
(b) 
=
(
is the enthalpy of vaporization)
= 
(c)
=
°
°
=
°
°![C)]](https://tex.z-dn.net/?f=C%29%5D)
ΔT
°
°

= 109J/mole
The answer is GAS. Gas has a physical state characterized by having no definite volume or shape and consisting of neutral particles. or it can also be plasma.
Answer:
When an atom loses electron(s) it will lose some of its negative charge and so becomes positively charged. A positive ion is formed where an atom has more protons than electrons. In the opposite case when an atom gains electron(s) it becomes negatively charged (more electrons than protons).
Explanation:
The volume of a gas that occupies 9 L at a temperature of 325K is 12.46L.
<h3>How to calculate volume?</h3>
The volume of a given gas can be calculated using the following Charle's law equation:
V1/T1 = V2/T2
Where;
- T1 = initial temperature
- T2 = final temperature
- V1 = initial volume
- V2 = final volume
- V1 = 9L
- V2 = ?
- T1 = 325K
- T2 = 450K
9/325 = V2/450
325V2 = 4050
V2 = 4050/325
V2 = 12.46L
Therefore, the volume of a gas that occupies 9 L at a temperature of 325K is 12.46L.
Learn more about volume at: brainly.com/question/2817451
According to the law of conservation of mass, the amount of BARIUM present of the reactants is the same as the amount present in the products (the precipitate).
(11.21 g BaSO4) / (233.4 g/mol BaSO4) = 0.0480 mol BaSO4 and original barium salt
(10.0 g) / (0.0480 mol) = 208.3 g/mol
So it must have been BaCl2, because the molar mass of Barium is 137 which leave 71 grams left. Since Barium is a +2 charge, it means the atom next to it must be twice. Chlorine mass is 35, which twice is 71