Answer:
B. only particle Z
Explanation:
In the case of subatomic particles, those positive and neutral are located in the nucleus, and those with a negative charge on the outside.
Answer:
473 year
Explanation:
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Given:
To reach 12.5% of reactant means that 0.125 of
is decomposed. So,
= 0.125
t = ?
t = 473 year
Answer: The molar mass of the gas is 9.878 g/mol.
Explanation:
According to Graham's law, the rate of diffusion is inversely proportional to square root of molar mass of gas.

where,
M = molar mass of gas
As given gas diffuses 1/7 times faster than hydrogen gas. So, its molar mass is calculated as follows.

where,
= molar mass of hydrogen gas
= molar mass of another given gas
= rate of diffusion of hydrogen
= rate of diffusion of another given gas = 
Substitute the values into above formula as follows.

Thus, we can conclude that the molar mass of the gas is 9.878 g/mol.
Iron (III) chloride catalyzes the decomposition of hydrogen peroxide because the decomposition of hydrogen peroxide is usually inhibited by the presence of ions such as phosphate ions in solution. The iron ions that would result from the dissolution of iron (III) chloride have a charge of 3+ and would bond with the -3 charged phosphate ions, creating a non-charged FePO4 molecule and removing the decomposition inhibitor from the solution. Potassium iodide and potassium chloride both are more strongly bonded than a transition metal compound and would lack the necessary charged iron ion when added to hydrogen peroxide.