Answer:
Solid, Liquid and Gas
Explanation:
They are the 3 states or stages of Matter
Newton's law of conservation states that energy of an isolated system remains a constant. It can neither be created nor destroyed but can be transformed from one form to the other.
Implying the above law of conservation of energy in the case of pendulum we can conclude that at the bottom of the swing the entire potential energy gets converted to kinetic energy. Also the potential energy is zero at this point.
Mathematically also potential energy is represented as
Potential energy= mgh
Where m is the mass of the pendulum.
g is the acceleration due to gravity
h is the height from the bottom z the ground.
At the bottom of the swing,the height is zero, hence the potential energy is also zero.
The kinetic energy is represented mathematically as
Kinetic energy= 1/2 mv^2
Where m is the mass of the pendulum
v is the velocity of the pendulum
At the bottom the pendulum has the maximum velocity. Hence the kinetic energy is maximum at the bottom.
Energy can neither be created e destroyed. It can only be transferred from one form to another. Implying this law and the above explainations we conclude that at the bottom of the pendulum,the potential energy=0 and the kinetic energy=294J as the entire potential energy is converted to kinetic energy at the bottom.
Answer
given,
time = 10 s
ship's speed = 5 Km/h
F = m a
a is the acceleration and m is mass.
In the first case
F₁=m x a₁
where a₁ = difference in velocity / time
F₁ is constant acceleration is also a constant.
Δv₁ = 5 x 0.278
Δv₁ = 1.39 m/s

a₁ = 0.139 m/s²
F₂ =m x a₂
F₃ = F₂ + F₁
Δv₃ = 19 x 0.278
Δv₃ = 5.282 m/s
a₃=Δv₂ / t

a₃ = 0.5282 m²/s
m a₃=m a₁ + m a₂
a₃ = a₂ + a₁
0.5282 = a₂ + 0.139
a₂=0.3892 m²/s
F₂ = m x 0.3892...........(1)
F₁ = m x 0.139...............(2)
F₂/F₁
ratio = 
ratio = 2.8
Refer to the diagram shown below.
In order for the balloon to strike the professor's head, th balloon should drop by 18 - 1.7 = 16.3 m in the time at the professor takes to walk 1 m.
The time for the professor to walk 1 m is
t = (1 m)/(0.45 m/s) = 2.2222 s
The initial vertical velocity of the balloon is zero.
The vertical drop of the balloon in 2.2222 s is
h = (1/2)*(9.8 m/s²)*(2.2222 s)² = 24.197 m
Because 24.97 > 16.3, the balloon lands in front of the professor, and does not hit the professor.
The time for the balloon to hit the ground is
(1/2)*(9.8)*t² = 18
t = 1.9166 s
The time difference is 2.2222 - 1.9166 = 0.3056 s
Within this time interval, the professor travels 0.45*0.3056 = 0.175 m
Therefore the balloon falls 0.175 m in front of the professor.
Answer:
The balloon misses the professor, and falls 0.175 m in front of the professor.