When a bond is formed, energy is released into the environment. That is because it is an exothermic reaction, it releases energy. <span />
Answer : The volume of liquid is 420 mL.
Explanation :
Density : The mass per unit volume of a substance is known as density.
Formula used:

As we are given:
Density of mercury = 13.5 g/mL
Mass = 12.5 pounds
First we have to convert mass of sample from pound to gram.
Conversion used:
As, 1 pound = 453.6 g
So, 12.5 pounds = 453.6 × 12.5 g = 5670 g
Now we have to calculate the volume of liquid.

Now putting all the given values in this formula, we get:

Volume = 420 mL
Therefore, the volume of liquid is 420 mL.
x= the coefficients in front of the substance in the balanced chemical equation
[H+]= the concentration of hydrogen ions
[A-]= the concentration of the other ion that broke off from the H+
[HA]= the un-disassociated acid concentration
The higher the Ka value, the greater amount of disassociation of the reactants into products. As for acids, they will break down to form H+ ions. The more the H+ ions, the stronger acidity of the solution. Thus since A has the highest Ka value, that represents the strongest acid.
You can determine the Ka value from a number of ways. If equilibrium concentrations are given of a certain acid solution, you can find the proportion of the concentration of ions to the concentration of the remaining HA molecules, using the equation above. Also, pH and KpH can be used in a number of ways. This gets more complicated and depends on the situation, and requires more advanced equations.
Hope this helped a little, its obviously not my best work
Answer:
There are 0,011 moles of hydrogen gas.
Explanation:
We use the ideal gas formula, with the constant R = 0.082 l atm / K mol. The STP conditions are : 1 atm pressure and 273 K temperature. Solve for the formula, n (number of moles):
PV=nRT ---> n= (PV)/(RT)
n= (1 atm x 0,25 L)/ (0,082 l atm/ K mol x 273 K)
<em>n= 0,011 mol</em>
I'd say he ways about 35 kilograms, but I'm probably wrong, xD