For #1, I'd say it's "It will usually bond to multiple atoms which can provide a total of 4 additional electrons."
2. Ionic (I'm quite certain because anions/cations (-1 & +1) are Ionic from what I recall, if that's true it's Ionic.
3. "comparison of the associated families to which the elements belong" and
"the difference in electronegativities" are what I would choose, as I mentioned in a comment earlier.
If I'm wrong let me know, but I am at least 80% sure that these responses are correct from what I remember in Chemistry.
Answer:
Explanation:
From the given information:
The equation for the reaction can be represented as:

The I.C.E table can be represented as:
2SO₂ O₂ 2SO₃
Initial: 14 2.6 0
Change: -2x -x +2x
Equilibrium: 14 - 2x 2.6 - x 2x
However, Since the amount of sulfur trioxide gas to be 1.6 mol.
SO₃ = 2x,
then x = 1.6/2
x = 0.8 mol
For 2SO₂; we have 14 - 2x
= 14 - 2(0.8)
= 14 - 1.6
= 12.4 mol
For O₂; we have 2.6 - x
= 2.6 - 1.6
= 1.0 mol
Thus;
[SO₂] = moles / volume = ( 12.4/50) = 0.248 M ,
[O₂] = 1/50 = 0.02 M ,
[SO₃] = 1.6/50 = 0.032 M
Kc = [SO₃]² / [SO₂]² [O₂]
= ( 0.032²) / ( 0.248² x 0.02)
= 0.8325
Recall that; the equilibrium constant for the reaction
= 0.8325;
If we want to find:

Then:


Since no temperature is given to use in the question, it will be impossible to find the final temperature of the mixture.
You would have to dig up 261 g of sylvanite.
Mass of sylvanite = 73.0 g Au × (100 g sylvanite/28.0 g Au) = <em>261 g</em> sylvanite.
Answer:
just replace the 9 mole with 3.68 g of Al .
I think it will help you.
To solve this problem, we assume ideal gas so that we can
use the formula:
PV = nRT
since the volume of the flask is constant and R is
universal gas constant, so we can say:
n1 T1 / P1 = n2 T2 / P2
1.9 mol * (21 + 273 K) / 697 mm Hg = n2 * (26 + 273 K) /
841 mm Hg
<span>n2 = 2.25 moles</span>