Answer:
The moment of inertia about the rotation axis is 117.45 kg-m²
Explanation:
Given that,
Mass of one child = 16 kg
Mass of second child = 24 kg
Suppose a playground toy has two seats, each 6.1 kg, attached to very light rods of length r = 1.5 m.
We need to calculate the moment of inertia
Using formula of moment of inertia


m = mass of seat
m₁ =mass of one child
m₂ = mass of second child
r = radius of rod
Put the value into the formula


Hence, The moment of inertia about the rotation axis is 117.45 kg-m²
Using current technology, useful parallax measurements can only be found for stars up to about 340 light years (100 parsecs) away.
Answer:
7200 kg.m/s
Explanation:
According the law of conservation of linear momentum, the sum of momentum before and after collision are equal.
Using this principle, the sum of initial momentum will be given as p=mv where p is momentum, m is mass and v is velocity
Initial momentum
Mass of whale*initial velocity of whale + mass of seal*initial seal velocity
Since the seal is initially stationary, its velocity is zero. By substitution and taking right direction as positive
Initial momentum will be
1200*6+(280*0)=7200 kg.m/s
Since both initial and final momentum should be equal, hence the final momentum will also be 7200 kg.m/s
well in my own words, i'd saw the the doppler effect is similar to light because sound has a speed, and light does too.
so my theory is if you go fast enough everything would just become black, or maybe white? idk its hard to explain
but what my point is, is taht the doppler effect works in the same way, like if a car is moving towards you the sound is being emitted from the car and being pushed by the speed of the car making it have a much higher pitch, when the car is going away however it drops to a lower pitch due the the sound waves being DRAGGED by the car.
there hoped this helped I guess
Your answer is infrared, visible, ultraviolet.