Answer:
Looks like mold that got frosted over
Explanation:
Answer:
- def median(l):
- if(len(l) == 0):
- return 0
- else:
- l.sort()
- if(len(l)%2 == 0):
- index = int(len(l)/2)
- mid = (l[index-1] + l[index]) / 2
- else:
- mid = l[len(l)//2]
- return mid
-
- def mode(l):
- if(len(l)==0):
- return 0
-
- mode = max(set(l), key=l.count)
- return mode
-
- def mean(l):
- if(len(l)==0):
- return 0
- sum = 0
- for x in l:
- sum += x
- mean = sum / len(l)
- return mean
-
- lst = [5, 7, 10, 11, 12, 12, 13, 15, 25, 30, 45, 61]
- print(mean(lst))
- print(median(lst))
- print(mode(lst))
Explanation:
Firstly, we create a median function (Line 1). This function will check if the the length of list is zero and also if it is an even number. If the length is zero (empty list), it return zero (Line 2-3). If it is an even number, it will calculate the median by summing up two middle index values and divide them by two (Line 6-8). Or if the length is an odd, it will simply take the middle index value and return it as output (Line 9-10).
In mode function, after checking the length of list, we use the max function to estimate the maximum count of the item in list (Line 17) and use it as mode.
In mean function, after checking the length of list, we create a sum variable and then use a loop to add the item of list to sum (Line 23-25). After the loop, divide sum by the length of list to get the mean (Line 26).
In the main program, we test the three functions using a sample list and we shall get
20.5
12.5
12
Answer:
(iv) second law of thermodynamics
Explanation:
The Clausius inequality expresses the second law of thermodynamics it applies to the real engine cycle.It is defined as the cycle integral of change in entropy of a reversible system is zero. It is nothing but mathematical form of second law of thermodynamics . It also states that for irreversible process the cyclic integral of change in entropy is less than zero
Given:
Temperature of water,
=
=273 +(-6) =267 K
Temperature surrounding refrigerator,
=
=273 + 21 =294 K
Specific heat given for water,
= 4.19 KJ/kg/K
Specific heat given for ice,
= 2.1 KJ/kg/K
Latent heat of fusion,
= 335KJ/kg
Solution:
Coefficient of Performance (COP) for refrigerator is given by:
Max
= 
=
= 9.89
Coefficient of Performance (COP) for heat pump is given by:
Max
= 
= 10.89
Answer:
526.5 KN
Explanation:
The total head loss in a pipe is a sum of pressure head, kinetic energy head and potential energy head.
But the pipe is assumed to be horizontal and the velocity through the pipe is constant, Hence the head loss is just pressure head.
h = (P₁/ρg) - (P₂/ρg) = (P₁ - P₂)/ρg
where ρ = density of the fluid and g = acceleration due to gravity
h = ΔP/ρg
ΔP = ρgh = 1000 × 9.8 × 7.6 = 74480 Pa
Drag force over the length of the pipe = Dynamic pressure drop over the length of the pipe × Area of the pipe that the fluid is in contact with
Dynamic pressure drop over the length of the pipe = ΔP = 74480 Pa
Area of the pipe that the fluid is in contact with = 2πrL = 2π × (0.075/2) × 30 = 7.069 m²
Drag Force = 74480 × 7.069 = 526468.1 N = 526.5 KN