D) O Water - Based Is the 1000000000000000000% correct answer
Answer: the average velocity decreases
Explanation:
From the provided data we have:
Vessel avg. diameter[mm] number
Aorta 25.0 1
Arteries 4.0 159
Arteioles 0.06 1.4*10^7
Capillaries 0.012 2.9*10^9
from the information, let
be the mass flow rate,
is density, n number of vessels, and A is the cross-section area for each vessel
the flow rate is constant so it is equal for all vessels,
The average velocity is related to the flow rate by:

we clear the side where v is in:

area is π*R^2 where R is the average radius of the vessel (diameter/2)
we get:

you can directly see in the last equation that if we go from the aorta to the capillaries, the number of vessels is going to increase ( n will increase and R is going to decrease ) . From the table, R is significantly smaller in magnitude orders than n, therefore, it wont impact the results as much as n. On the other hand, n will change from 1 to 2.9 giga vessels which will dramatically reduce the average blood velocity
Answer:
16.2 cents
Explanation:
Given that a homeowner consumes 260 kWh of energy in July when the family is on vacation most of the time.
Where Base monthly charge of $10.00. First 100 kWh per month at 16 cents/kWh. Next 200 kWh per month at 10 cents/kWh. Over 300 kWh per month at 6 cents/kWh.
For the first 100 kWh:
16 cent × 100 = 1600 cents = 16 dollars
Since 1 dollar = 100 cents
For the remaining energy:
260 - 100 = 160 kwh
10 cents × 160 = 1600 cents = 16 dollars
The total cost = 10 + 16 + 16 = 42 dollars
Note that the base monthly of 10 dollars is added.
The cost of 260 kWh of energy consumption in July is 42 dollars
To determine the average cost per kWh for the month of July, divide the total cost by the total energy consumed.
That is, 42 / 260 = 0.1615 dollars
Convert it to cents by multiplying the result by 100.
0.1615 × 100 = 16.15 cents
Approximately 16.2 cents
Answer:
Explanation:
From the given question:
Using the distortion energy theory to determine the factors of safety FOS can be expressed by the relation:

where; syt = strength in tension and compression = 350 MPa
The maximum shear stress theory can be expressed as:

where;

a. Using distortion - energy theory formula:



FOS = 2.183
USing the maximum-shear stress theory;




FOS = 1.977
b. σx = 110 MPa, σy = 100 MPa
Using distortion - energy theory formula:




FOS =3.322
USing the maximum-shear stress theory;



FOS = 350/2×25
FOS = 350/50
FOS = 70
c. σx = 90 MPa, σy = 20 MPa, τxy =−20 MPa
Using distortion- energy theory formula:



FOS = 350/88.88
FOS = 3.939
USing the maximum-shear stress theory;





FOS = 4.341