Evaluating a Satire
Whom or what is Swift criticizing in his satire, and what
techniques does he use to make his point? Write a two-
to three-sentence response, using examples from the
text to support your answer
Step-by-step explanation:
step one: *multiply the negative 9 with the 5j.
which which will come out to be -45j
step 2: now now multiply the -9 with the k. which it comes out to be negative 9k.
step 3: -45j + -9k
Let the slower runners speed be X kilometers per hour.
Then the faster runners speed would be X+2 kilometers per hour.
The formula for distance is Speed times time.
The distance is given as 30 kilometers and time is given as 3 hours.
Since there are two runners you need to add the both of them together.
The equation becomes 30 = 3x + 3(x+2)
Now solve for x:
30 = 3x + 3(x+2)
Simplify:
30 = 3x + 3x +6
30 = 6x + 6
Subtract 6 from each side:
24 = 6x
Divide both sides by 6:
x = 24/6
x = 4
The slower runner ran at 4 kilometers per hour.
The faster runner ran at 4+2 = 6 kilometers per hour.
First, you need to write to expressions to model each situation:
Plan A: 10+0.15x
Plan B: 30+0.1x
Next, set the expressions equal to each other and solve for x:
10+0.15x=30+0.1x
<em>*Subtract 0.1x from both sides to isolate the variable*</em>
10+0.05x=30
<em>*Subtract 10 from both sides*</em>
0.05x=20
<em>*Divide both sides by 0.05*</em>
x=400
The plans would have the same cost after 400 minutes of calls.
To find how much money the plans cost at 400 minutes, plug 400 into either expression. We'll use Plan A:
10+0.15(400)
10+60
70
The plans will cost $70.
Hope this helps!
That would be 1/8 times 288, so the answer would be 36 part time workers.