The total work done on the car is 784Joule.
<h3>What's the acceleration of the car?</h3>
- As per Newton's equation of motion, V= U+at
- U= initial velocity= 0 m/s
V= vinal velocity= 20m/s
t= time = 10s
a= acceleration
=> a= 20/10= 2m/s²
<h3>What's the distance covered by the car in 10 seconds?</h3>
- As per Newton's equation of motion,
V²-U² = 2aS
- S= distance covered by the car
- So, 20²-0=2×2×S=4S
=> 400= 4S
=> S= 400/4= 100m
<h3>What's the work done on the car due to frictional force?</h3>
Work done by frictional force= frictional force × distance
= (0.2×4×9.8)×100
= 784Joule
Thus, we can conclude that the work done on the car is 784Joule.
Learn more about the work done here:
brainly.com/question/25573309
#SPJ1
Answer:
The required angle is (90-25)° = 65°
Explanation:
The given motion is an example of projectile motion.
Let 'v' be the initial velocity and '∅' be the angle of projection.
Let 't' be the time taken for complete motion.
Let 'g' be the acceleration due to gravity
Taking components of velocity in horizontal(x) and vertical(y) direction.
= v cos(∅)
= v sin(∅)
We know that for a projectile motion,
t =
Since there is no force acting on the golf ball in horizonal direction.
Total distance(d) covered in horizontal direction is -
d =
×t = vcos(∅)×
=
.
If the golf ball has to travel the same distance 'd' for same initital velocity v = 23m/s , then the above equation should have 2 solutions of initial angle 'α' and 'β' such that -
α +β = 90° as-
d =
=
=
=
.
∴ For the initial angles 'α' or 'β' , total horizontal distance 'd' travelled remains the same.
∴ If α = 25° , then
β = 90-25 = 65°
∴ The required angle is 65°.
So first Identify all the given Varibales so u can choose which Eqauton to use
D=200m
T=4s
Vi=10m/s
Vf=?
You should this equation
D= 0.50(Vf+Vi)T
Plug in the values
200= 0.50 (Vf+10) 4
Divide the 4 out of the right side and if you do sumthing to one side you gotta do it to the other
200 divided by 4= 0.50(Vf+10)
50= 0.50(Vf+10)
Now expand the 0.50
So 50= 0.5Vf + 5 (because 0.5 times 10 is 5)
Now get rid of the 5
50-5= 0.5Vf
45 =0.5Vf now Divide the 0.5 out
45 divided by 0.5 = Vf
And 45/0.5 is 90
So 90=Vf
Therefore the final Velocity is 90m/s
<span>When an object is forced into resonance vibrations at one of its natural frequencies, it vibrates in a manner such that a standing wave is formed within the object. ... such patterns are only created within the medium at specific frequencies of vibration.</span>
Assuming that the entirety of the force is opposite the static friction, then the couch should begin sliding as the applied force overcomes the couch's static friction with what it's making contact with.