1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ivann1987 [24]
3 years ago
11

What is the internal energy of 4.50 mol of N2 gas at 253°C? To solve this

Physics
1 answer:
Finger [1]3 years ago
6 0

The internal energy of the gas is 49,200 J

Explanation:

The internal energy of a diatomic gas, such as N_2, is given by

U=\frac{5}{2}nRT

where

n is the number of moles

R is the gas constant

T is the absolute temperature of the gas

For the gas in this problem, we have:

n = 4.50 (number of moles)

R = 8.31 J/(mol·K) (gas constant)

T=253^{\circ} + 273 = 526 K (absolute temperature)

Substituting, we find:

U=\frac{5}{2}(4.50)(8.31)(526)=49,200 J

Learn more about ideal gases:

brainly.com/question/9321544

brainly.com/question/7316997

brainly.com/question/3658563

#LearnwithBrainly

You might be interested in
Photosynthesis and respiration are best described as
Olin [163]
The answer is 3. Photosynthesis removes carbon dioxide while respiration puts back carbon dioxide
7 0
3 years ago
Read 2 more answers
A tree falls in a forest. How many years must pass before the 14C activity in 1.03 g of the tree's carbon drops to 1.02 decay pe
Illusion [34]

Answer:

t = 5.59x10⁴ y

Explanation:

To calculate the time for the ¹⁴C drops to 1.02 decays/h, we need to use the next equation:

A_{t} = A_{0}\cdot e^{- \lambda t}    (1)

<em>where A_{t}: is the number of decays with time, A₀: is the initial activity, λ: is the decay constant and t: is the time.</em>

To find A₀ we can use the following equation:  

A_{0} = N_{0} \lambda   (2)

<em>where N₀: is the initial number of particles of ¹⁴C in the 1.03g of the trees carbon </em>

From equation (2), the N₀ of the ¹⁴C in the trees carbon can be calculated as follows:        

N_{0} = \frac{m_{T} \cdot N_{A} \cdot abundance}{m_{^{12}C}}

<em>where m_{T}: is the tree's carbon mass, N_{A}: is the Avogadro's number and m_{^{12}C}: is the ¹²C mass.  </em>

N_{0} = \frac{1.03g \cdot 6.022\cdot 10^{23} \cdot 1.3\cdot 10^{-12}}{12} = 6.72 \cdot 10^{10} atoms ^{14}C    

Similarly, from equation (2) λ is:

\lambda = \frac{Ln(2)}{t_{1/2}}

<em>where t 1/2: is the half-life of ¹⁴C= 5700 years </em>

\lambda = \frac{Ln(2)}{5700y} = 1.22 \cdot 10^{-4} y^{-1}

So, the initial activity A₀ is:  

A_{0} = 6.72 \cdot 10^{10} \cdot 1.22 \cdot 10^{-4} = 8.20 \cdot 10^{6} decays/y    

Finally, we can calculate the time from equation (1):

t = - \frac{Ln(A_{t}/A_{0})}{\lambda} = - \frac {Ln(\frac{1.02decays \cdot 24h \cdot 365d}{1h\cdot 1d \cdot 1y \cdot 8.20 \cdot 10^{6} decays/y})}{1.22 \cdot 10^{-4} y^{-1}} = 5.59 \cdot 10^{4} y              

I hope it helps you!

4 0
3 years ago
A 85 kg lineman tackles a 90 kg receiver. The receiver is running 5.8 m/s, and the lineman is moving 4.1 m/s, at a right angle t
weeeeeb [17]

Answer:

3.59 m/s

Explanation:

We are given that

Mass of lineman,m=85 kg

Mass of receiver,m'=90 kg

Speed of receiver,v'=5.8 m/s

Speed of lineman,v=4.1 m/s

\theta=90^{\circ}

We have to find the their velocity immediately after the tackle.

Initial momentum,P_i=\sqrt{p^2_1+p^2_2}=\sqrt{(85\times 4.1)^2+(90\times 5.8)^2}=627.6 kgm/s

According to law of conservation of momentum

Initial momentum=Final momentum=(m+m')V

627.6=(85+90)V=175V

V=\frac{627.6}{175}=3.59 m/s

3 0
3 years ago
A proton is moved so that its electric potential energy increases from 4.0 × 10-14 J to 9.0 × 10-14 J. The magnitude of the char
Kamila [148]

Answer:

B. 3.1 × 10^5 V

Explanation:

8 0
3 years ago
Read 2 more answers
WHICH ONE IS CORRECT???
sveta [45]

Answer:

A

Explanation:

5 0
2 years ago
Read 2 more answers
Other questions:
  • Explain what relative weight is and why it is important to the calculation of atomic mass.
    5·1 answer
  • Does this show the geocentric or heliocentric idea of the solar system? Explain the difference
    5·2 answers
  • What is a “plate” in geological terms
    6·1 answer
  • What force must be exerted on the master cylinder of a hydraulic lift to support the weight of a 2000-kg car (a large car) resti
    5·1 answer
  • A 12.0N force with a fixed orientation does work on a
    12·1 answer
  • True or false: in our solar system, only the sun creates radio waves
    10·1 answer
  • PLEASE HELP AS SOON AS POSSIBLE!!
    10·1 answer
  • HELP ASAP HELP Two tennis balls of the same mass are served at different speeds: 30 m/s and 60 m/s. Which serve has more kinetic
    10·2 answers
  • Comet is seen after a long period of time. Why?​
    10·1 answer
  • 5
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!