Is drifting around in space
Answer:
The force of gravity
Explanation:
Gravity was studied, by early scientists such as Copernicus and others, Galileo was the first to ensure that planets moved according to a physical equation that depended on a force that caused celestial bodies to move and interact with each other. But years later Newton based on studies conducted deciphering what Galileo assumed, he was able to find the equation of the force of gravity in any body in the universe. This equation depends on the masses of the two interacting bodies, the distance between them and a constant, which I call universal gravitation constant.

Fg = gravity force [N]
G = universal gravitation constant = 6.67*10^(-11) [N*m^2/kg^2]
m1 = mass of the 1st body [kg]
m2 = mass of the 2nd body [kg]
r = distance between the bodies [meters]
Answer:
Magnetic field, B = 0.004 mT
Explanation:
It is given that,
Charge, 
Mass of charge particle, 
Speed, 
Acceleration, 
We need to find the minimum magnetic field that would produce such an acceleration. So,

For minimum magnetic field,



B = 0.004 T
or
B = 4 mT
So, the magnetic field produce such an acceleration at 4 mT. Hence, this is the required solution.
The change in the player's internal energy is -491.6 kJ. The number of nutritional calories is -117.44 kCal
For this process to take place, some of the basketball player's perspiration must escape from the skin. This is because sweating relies on a physical phenomenon known as the heat of vaporization.
The heat of vaporization refers to the amount of heat required to convert 1g of a liquid into a vapor without causing the liquid's temperature to increase.
From the given information,
- the work done on the basketball is dW = 2.43 × 10⁵ J
The amount of heat loss is represented by dQ.
where;
∴
Using the first law of thermodynamics:b
dU = dQ - dW
dU = -mL - dW
dU = -(0.110 kg × 2.26 × 10⁶ J/kg - 2.43 × 10⁵ J)
dU = -491.6 × 10³ J
dU = -491.6 kJ
The number of nutritional calories the player has converted to work and heat can be determined by using the relation:

dU = -117.44 kcal
Learn more about first law of thermodynamics here:
brainly.com/question/3808473?referrer=searchResults
The optimum wavelength is 450 nm because that is the wavelength of maximum absorbance by FeSCN2+(aq)
you should choose a wavelength with maximum absorbance. In this case, you are using the scattered light, not the absorbed light as your signal. So you should avoid wavelengths where there are absorption peaks.
<h3>What is wavelength ?</h3>
A waveform signal that is carried in space or down a wire has a wavelength, which is the separation between two identical places (adjacent crests) in the consecutive cycles. This length is typically defined in wireless systems in metres (m), centimetres (cm), or millimetres (mm) (mm).
- The distance between two waves' crests serves as an illustration of wavelength. When you and another person have the same overall mindset and can easily communicate, that is an example of being on the same wavelength.
Learn more about Wavelength here:
brainly.com/question/10750459
#SPJ4