Answer:
a)Yes will deform plastically
b) Will NOT experience necking
Explanation:
Given:
- Applied Force F = 850 lb
- Diameter of wire D = 0.15 in
- Yield Strength Y=45,000 psi
- Ultimate Tensile strength U = 55,000 psi
Find:
a) Whether there will be plastic deformation
b) Whether there will be necking.
Solution:
Assuming a constant Force F, the stress in the wire will be:
stress = F / Area
Area = pi*D^2 / 4
Area = pi*0.15^2 / 4 = 0.0176715 in^2
stress = 850 / 0.0176715
stress = 48,100.16 psi
Yield Strength < Applied stress > Ultimate Tensile strength
45,000 < 48,100 < 55,000
Hence, stress applied is greater than Yield strength beyond which the wire will deform plasticly but insufficient enough to reach UTS responsible for the necking to initiate. Hence, wire deforms plastically but does not experience necking.
Centripetal acceleration is directed along a radius so it may also be called the radial acceleration. If the speed is not constant, then there is also a tangential acceleration (at). The tangential acceleration is, indeed, tangent to the path of the particle's motion.
High temperature gives the hydrogen atoms enough energy to overcome the electrical repulsion between the protons. Fusion requires temperatures of about 100 million Kelvin (approximately six times hotter than the sun's core).

Answer:
I’m pretty sure it’s D
Explanation:
the crust breaks and shifts when that happens
hope dis helps ^-^
Answer:
191433.4 hours
Explanation:
We are given that In the average US household, the television is on 6.75 hours/day! How many hours will have passed after 77.7 years (the average lifeexpectancy of an American)?
1 year - 365 days
Given that the television is on 6.75 hours/day.
If 1 year = 365 days
Convert 77.7 years to days by multiplying it by 365
77.7 × 365 = 28360.5 days
So the number of hours will be:
28360.5 × 6.75 = 191433.375 hours
Therefore, 191433.4 hours will pass.
Non of the options is correct.