1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jasenka [17]
3 years ago
8

Write a single statement that prints outsideTemperature with 2 digits in the fraction

Engineering
1 answer:
lord [1]3 years ago
3 0

Answer:

outsideTemperature=108.90

Explanation:

#include <iostream>

#include <ios>

#include <iomanip>

using namespace std;

int main()

{

double outsideTemperature = 108.90;

/* print outside temperature  */

cout << setprecision(2) << fixed << outsideTemperature << endl;  

return 0;

}

You might be interested in
I will mark as brainliest !
Sliva [168]

Answer:

7.8 Mph

Explanation:

Rate of cycling = 1.1 rev/s

Rear wheel diameter = 26 inches

Diameter of sprocket on pedal = 6 inches

Diameter of sprocket on rear wheel = 4 inches

Circumference of rear wheel =  \pi d=26\piπd=26π

Speed would be

\begin{gathered}\text{Rate of cycling}\times \frac{\text{Diameter of sprocket on pedal}}{\text{Diameter of sprocket on rear wheel}}\times{\text{Circumference of rear wheel}}\\ =1.1\times \frac{6}{4}\times 26\pi\\ =134.77432\ inches/s\end{gathered}Rate of cycling×Diameter of sprocket on rear wheelDiameter of sprocket on pedal×Circumference of rear wheel=1.1×46×26π=134.77432 inches/s

Converting to mph

1\ inch/s=\frac{1}{63360}\times 3600\ mph1 inch/s=633601×3600 mph

134.77432\ inches/s=134.77432\times \frac{1}{63360}\times 3600\ mph=7.65763\ mph134.77432 inches/s=134.77432×633601×3600 mph=7.65763 mph

The Speed of the bicycle is 7.8 mph

3 0
3 years ago
A single fixed pulley is used to lift a load of 400N by the application of an effort of 480N in 10s through a vertical height of
Allushta [10]

Answer:

(a) the velocity ratio of the machine (V.R) = 1

(b) The mechanical advantage of the machine (M.A) = 0.833

(c) The efficiency of the machine (E) = 83.3 %

Explanation:

Given;

load lifted by the pulley, L = 400 N

effort applied in lifting the, E = 480 N

distance moved by the effort, d = 5 m

(a) the velocity ratio of the machine (V.R);

since the effort applied moved downwards through a distance of d, the load will also move upwards through an equal distance 'd'.

V.R = distance moved by effort / distance moved by the load

V.R = 5/5 = 1

(b) The mechanical advantage of the machine (M.A);

M.A = L/E

M.A = 400 / 480

M.A = 0.833

(c) The efficiency of the machine (E);

E = \frac{M.A}{V.R} \times 100\%\\\\E = 0.833 \ \times \ 100\%\\\\ E = 83.3 \ \%

4 0
3 years ago
Which manufacturing process can create complex solid objects of metal such as the one shown in the image
Cerrena [4.2K]
Casting is the correct answer
8 0
2 years ago
Read 2 more answers
Briefly describe an idea for a new product, (which can be anything) while thinking made me about it cost analysis. Depict what k
larisa86 [58]

Answer:

A transforming vechicle that could transform from a land-based vehicle to a water-based vehicle and to an air based vehicle.

Explanation:

7 0
3 years ago
Air in a large tank at 300C and 400kPa, flows through a converging diverging nozzle with throat diameter 2cm. It exits smoothly
-Dominant- [34]

Answer:

The answer is "3.74 \ cm\ \ and \ \ 0.186 \frac{kg}{s}"

Explanation:

Given data:  

Initial temperature of tank T_1 = 300^{\circ}\ C= 573 K

Initial pressure of tank P_1= 400 \ kPa

Diameter of throat d* = 2 \ cm

Mach number at exit M = 2.8

In point a:

calculating the throat area:

A*=\frac{\pi}{4} \times d^2

      =\frac{\pi}{4} \times 2^2\\\\=\frac{\pi}{4} \times 4\\\\=3.14 \ cm^2

Since, the Mach number at throat is approximately half the Mach number at exit.  

Calculate the Mach number at throat.  

M*=\frac{M}{2}\\\\=\frac{2.8}{2}\\\\=1.4

Calculate the exit area using isentropic flow equation.

\frac{A}{A*}= (\frac{\gamma -1}{2})^{\frac{\gamma +1}{2(\gamma -1)}}  (\frac{1+\frac{\gamma -1}{2} M*^2}{M*})^{\frac{\gamma +1}{2(\gamma -1)}}

Here: \gamma is the specific heat ratio. Substitute the values in above equation.

\frac{A}{3.14}= (\frac{1.4-1}{2})^{-\frac{1.4+1}{2(1.4 -1)}}  (\frac{1+\frac{1.4-1}{2} (1.4)^2}{1.4})^{\frac{1.4+1}{2(1.4-1)}} \\\\A=\frac{\pi}{4}d^2 \\\\10.99=\frac{\pi}{4}d^2 \\\\d = 3.74 \ cm

exit diameter is 3.74 cm

In point b:

Calculate the temperature at throat.

\frac{T*}{T}=(1+\frac{\Gamma-1}{2} M*^2)^{-1}\\\\\frac{T*}{573}=(1+\frac{1.4-1}{2} (1.4)^2)^{-1}\\\\T*=411.41 \ K

Calculate the velocity at exit.  

V*=M*\sqrt{ \gamma R T*}

Here: R is the gas constant.  

V*=1.4 \times \sqrt{1.4 \times 287 \times 411.41}\\\\=569.21 \ \frac{m}{s}

Calculate the density of air at inlet

\rho_1 =\frac{P_1}{RT_1}\\\\=\frac{400}{ 0.287 \times 573}\\\\=2.43\  \frac{kg}{m^3}

Calculate the density of air at throat using isentropic flow equation.  

\frac{\rho}{\rho_1}=(1+\frac{\Gamma -1}{2} M*^2)^{-\frac{1}{\Gamma -1}} \\\\\frac{\rho *}{2.43}=(1+\frac{1.4-1}{2} (1.4)*^2)^{-\frac{1}{1.4-1}} \\\\\rho*= 1.045 \ \frac{kg}{m^3}

Calculate the mass flow rate.  

m= \rho* \times A* \times V*\\\\= 1.045 \times 3.14 times 10^{-4} \times 569.21\\\\= 0.186 \frac{kg}{s}

5 0
3 years ago
Other questions:
  • This assignment covers the sequential circuit component: Register and ALU. In this assignment you are supposed to create your ow
    13·1 answer
  • Due at 11:59pm please help
    14·1 answer
  • Water vapor at 10 MPa, 600°C enters a turbine operating at steady state with a volumetric flow rate of 0.36 m3/s and exits at 0.
    15·1 answer
  • why HF (hydrogen fluoride) has higher boiling temperature than HCl (hydrogen chloride), even thought HF has lower molecular weig
    8·1 answer
  • Write down the equation for the stoichiometric combustion of propane (C3H8).
    6·1 answer
  • Find the mechanical average of a wheel axle System of the wheel has a radius of 1.5 feet in the accident has a radius of 6 inche
    6·1 answer
  • List a minimum of four reasons why you might be rejected for a job offer.
    10·1 answer
  • What building codes did Mega Corporation fail to follow?
    9·1 answer
  • 18. Bela is doing a continuity test. What's he checking?
    10·1 answer
  • A common boundary-crossing problem for engineers is when their home country' values come into sharp contrast with the host count
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!