Answer:
a)
aB = 240 mm/s² (↓)
aA = - 345 mm/s²
b) For the Block C
v₀ = 130 mm/s
For the Block A
v₀ = - 43.33 mm/s
c) Δx = 727.5 mm
Explanation:
a) For the Block B
v = v₀ + a*t
480 = 0 + a*(2)
aB = 240 mm/s² (↓)
Then we have
3*LA + 4*LB + LC = L
If we apply
d(3*LA + 4*LB + LC)/dt = dL/dt
3*vA + 4*vB + vC = 0
d(3*vA + 4*vB + vC)/dt = d(0)/dt
3*aA + 4*aB + aC = 0
aA = - (4*aB + aC) / 3
aA = - (4*240 mm/s² + 75 mm/s²) / 3
aA = - 345 mm/s²
b) For the Block C
v = v₀ + a*t
v₀ = v – a*t
v₀ = 280 – (75)(2) = 130 mm/s
For the Block A
When t = 2 s
vB = 480 mm/s
vC = 280 mm/s
we use the formula
3*vA + 4*vB + vC = 0
3*vA + 4*(480) + 280 = 0
vA = - 733.33 mm/s
Now, we can apply
v = v₀ + a*t
- 733.33 mm/s = v₀ + (- 345 mm/s2)(2 s)
v₀ = - 43.33 mm/s
c) We can use the equation
Δx = v₀*t + (1/2)*a*t²
Δx = 130*(3) + (1/2)(75)(3)²
Δx = 727.5 mm
Answer:
∆S1 = 0.5166kJ/K
∆S2 = 0.51826kJ/K
Explanation:
Check attachment for solution
Answer:
2074.2 KW
Explanation:
<u>Determine power developed at steady state </u>
First step : Determine mass flow rate ( m )
m / Mmax = ( AV )₁ P₁ / RT₁ -------------------- ( 1 )
<em> where : ( AV )₁ = 8.2 kg/s, P₁ = 0.35 * 10^6 N/m^2, R = 8.314 N.M / kmol , </em>
<em> T₁ = 720 K . </em>
insert values into equation 1
m = 0.1871 kmol/s ( mix )
Next : calculate power developed at steady state ( using ideal gas tables to get the h values of the gases )
W( power developed at steady state )
W = m [ Yco2 ( h1 - h2 )co2
Attached below is the remaining part of the detailed solution