Total vapor pressure can be calculated using partial vapor pressures and mole fraction as follows:

Here,
is mole fraction of A,
is mole fraction of B,
is partial pressure of A and
is partial pressure of B.
The mole fraction of A and B are related to each other as follows:

In this problem, A is hexane and B is octane, mole fraction of hexane is given 0.580 thus, mole fraction of octane can be calculated as follows:

Partial pressure of hexane and octane is given 183 mmHg and 59.2 mmHg respectively.
Now, vapor pressure can be calculated as follows:

Putting the values,

Therefore, total vapor pressure over the solution of hexane and octane is 131 mmHg.
Answer :- In a light wave the property of wave which tells about the color of light is it's Wavelength .
Wavelength is the distance between one crest and one through , also it is the distance after which the wave repeat itself !
It's SI unit is meter !
It is scalar quantity !!
Different Wavelength of light have different color !!
• VIBGYOR
i.e, Violent , Indigo , Blue , Green , Yellow Orange, and Red along with their shades are the colors which we can see !!
• They almost range from 400nm to 700nm ( visible range of light )
Explanation:
Br2 + S2O32- + 5H2O –> 2Br- + 2SO4 + 10H+ + 6e
Answer:
A
Explanation:
the average kinetic energy of all the atoms or molecules of that substance.
Mass would be the amount of matter an object contains.