Answer:
D.phototropism
Explanation:
Phototropism is a type of tropism in which a plant or plant part responds to light. According to this question, a student wanted to investigate the effect of light on the growth of cress seedlings. The student used three different pots for the experiment.
Pot 1 was placed with light from above. Pot 2 was placed in a cupboard with no light. Pot 3 was placed in a window with light from one direction only. However, the image attached to this question shows that the plants in the different pots face different directions in response to light, which depicts phototropism
Answer:
Energy
Explanation:
A sugar group would be used for carbohydrates or nucleic acids. An adenosine group would be used in ATP formation if I recall correct. And disaccharides are just two monosaccharides linked together, so that would also be for carbohydrates. Therefore, energy is the answer.
Answer:
248 mL
Explanation:
According to the law of conservation of energy, the sum of the heat absorbed by water (Qw) and the heat released by the coffee (Qc) is zero.
Qw + Qc = 0
Qw = -Qc [1]
We can calculate each heat using the following expression.
Q = c × m × ΔT
where,
- ΔT: change in the temperature
163 mL of coffee with a density of 0.997 g/mL have a mass of:
163 mL × 0.997 g/mL = 163 g
From [1]
Qw = -Qc
cw × mw × ΔTw = -cc × mc × ΔTc
mw × ΔTw = -mc × ΔTc
mw × (54.0°C-25.0°C) = -163 g × (54.0°C-97.9°C)
mw × 29.0°C = 163 g × 43.9°C
mw = 247 g
The volume corresponding to 247 g of water is:
247 g × (1 mL/0.997 g) = 248 mL
Answer:
Weak bonds require less energy to form than strong bonds
Explanation:
According to Coulomb's law, the force between two species is inversely proportional to the distance between them. That said, the bigger the atoms are, the greater the bond length should be to form a molecule.
As a result, for a greater bond length, the attraction force is lower than for a shorter bond length. This implies that large atoms would form weak bonds and small atoms would form strong bonds.
Bond energy is defined as the amount of energy required to break the bond. If a bond is weak, it would require a low amount of energy to break it. This is also true for energy of formation, as it's the same process taking place in the opposite direction.