Answer:
Mg + Fe(NO₃)₂ —> Fe + Mg(NO₃)₂
Explanation:
The activity series helps us to easily define whether or not a reaction will occur.
Elements at the top of the activity series are highly reactive and will always displace those at the bottom of the series in any reaction.
With the above information in mind, let us answer the questions given above.
Ag + NaNO₃ —> Na + AgNO₃
The above reaction will not occur because Na is higher than Ag in the activity series. Thus, Ag cannot displace Na from solution.
Pb + Mg(NO₃)₂ —> Pb(NO₃)₂ + Mg
The above reaction will not occur because Mg is higher than Pb in the activity series. Thus, Pb cannot displace Mg from solution.
Mg + Fe(NO₃)₂ —> Fe + Mg(NO₃)₂
The above reaction will occur because Mg is higher than Fe in the activity series. Thus, Mg will displace Fe from solution.
Cu + Mg(NO₃)₂ —> Cu(NO₃)₂ + Mg
The above reaction will not occur because Mg is higher than Cu in the activity series. Thus, Cu cannot displace Mg from solution.
From the above illustration, only
Mg + Fe(NO₃)₂ —> Fe + Mg(NO₃)₂
Will occur.
If you were to compare the mass of the products and reactants in a reaction, you would find that the mass of the products is <span>equal to the mass of the reactants.</span>
Answer:
Plants and animals are pH sensitive. The growth of plants is dependent on the nature of the soil. If the pH of the soil is greater than 7 and is alkaline, then the plants cannot grow in the soil.
Explanation:
Answer:
Alkyne
Explanation:
The homologous series for this compound is the Alkyne because of the presence of the triple bond present between the third and fourth carbon atoms as seen in the picture attached.
Explanation:
Water is a polar solvent as the hydrogen and oxygen atom has large difference in their electronegativities.
Oxygen atom is highly electronegative as compared to hydrogen atom therefore, it pulls the electrons of hydrogen atom closer towards itself.
As a result, two poles will create forming a partial positive charge on the hydrogen atom and partial negative charge on the oxygen atom.
Thus, we can conclude that high electronegativity difference between oxygen and hydrogen is the cause of polarity in water molecules.