Answer:
Temperature required = 923K
Explanation:
The question is incomplete as there are some details that has to be given. details like the values of the standard enthalpies and entropies of the reactants and product as this is needed to calculate the actual value of the standard enthalpies and standard entropies of the reaction. I was able to get those values from literature and then calculated what needs to be calculated.
From there, I was able to use the equation that shows the relationship between, gibb's free energy, enthalpy, entropy and temperature. The necessary mathematical manipulation were done and the values were plugged in to get the temperature required to make the reaction spontaneous.
A few notes on the Gibb's free energy.
The Gibb's free energy also referred to as the gibb's function represented with letter G. it is the amount of useful work obtained from a system at constant temperature and pressure. The standard gibb's free energy on the other hand is a state function represented as Delta-G, as it depends on the initial and final states of the system.
The spontaneity of a reaction is explained by the standard gibb's free energy.
- If Delta-G = -ve ( the reaction is spontaneous)
- if Delta -G = +ve ( the reaction is non-spontaneous)
- if Delta-G = 0 ( the reaction is at equilibrium)
The step by step calculations is done as shown in the attachment.
Answer:
12 mi/h
Explanation:
Step 1: Given data
Step 2: Convert "d" to miles
We will use the conversion factor 1 mi = 1.60934 km.
6 km × 1 mi/1.60934 km = 3.7 mi
Step 3: Convert "t" to hours
We will use the conversion factor 1 h = 60 min.
19 min × 1 h/60 min = 0.32 h
Step 4: Calculate the average speed of the runner (s)
The speed is equal to the quotient between the total distance and the time elapsed.
s = d/t
s = 3.7 mi/0.32 h = 12 mi/h
Answer:
Moles of NO₂ = 0.158
Explanation:
SO 2 ( g ) + NO 2 ( g ) ⇄ SO 3 ( g ) + NO ( g )
According to the law of mass equation
= ![\frac{[SO_{3} ][NO]}{[SO_{2}][NO_{2} ]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BSO_%7B3%7D%20%5D%5BNO%5D%7D%7B%5BSO_%7B2%7D%5D%5BNO_%7B2%7D%20%20%5D%7D)
⇒ 3.10 =
At equilibrium [SO₃] = [NO]
⇒ [NO₂] = 
⇒ [NO₂] = 0.158
So. number of moles of NO₂ at equilibrium added = 0.158
The mole ratio of the reaction shows that equal volumes of hydrogen gas will be produced by the two reactions.
<h3>What is the mole ratio of a reaction?</h3>
The mole ratio of a reaction is the ratio in which the reactants and products of a given reaction occur for the reaction to proceed to completion.
The mole ratio of a reaction is also known as the stoichiometry of the reaction.
The equation of the two reactions are given below:


From the equation of the reaction reaction, an equal volume of hydrogen gas will be produced by the two reactions.
Therefore, the mole ratio of the reaction shows that equal volumes of hydrogen gas will be produced by the two reactions.
Learn more about mole ratio at: brainly.com/question/19099163
#SPJ1