The answer is A. Every action has an equal and opposite reaction
A mole of one element contains Same number of atoms as a mole of another element.
The atomic mass of an element, that is found on the periodic table, may be used to determine the amount of moles in a system. Typically, this mass represents the average of the element's abundant forms found on earth. The mass of an element is given as the average of all of its earthly isotopes. The molar mass of a material is the weight of a mole of that substance. In chemistry, the molar mass is frequently used in converting grams of a chemical to moles. The periodic table lists an element's molar mass, which is its atomic weight in grams per mole (g/mol).
The average mass of an element's atoms expressed in atomic mass units is known as its atomic mass (amu, also known as daltons, D). The weight of the each isotope is combined by its abundance to get the atomic mass, which is a weighted average of all the isotopes of that element.
To know more about Moles refer to brainly.com/question/19638114
#SPJ4
Answer:
the equation for cylinders is V = (pi)r2h
none of these are even close but i can do a little more research
sorry if this one wasnt as much help
Answer : The molar concentration of ethanol in the undiluted cognac is 8.44 M
Explanation :
Using neutralization law,

where,
= molar concentration of undiluted cognac = ?
= molar concentration of diluted cognac = 0.0844 M
= volume of undiluted cognac = 5.00 mL = 0.005 L
= volume of diluted cognac = 0.500 L
Now put all the given values in the above law, we get molar concentration of ethanol in the undiluted cognac.


Therefore, the molar concentration of ethanol in the undiluted cognac is 8.44 M
Answer:
B
Explanation:
A is not the answer. Although the statement is accurate in regards to gases, it does not explain why liquids and gases can flow.
B is the answer. Solids are in fixed structures. When you apply heat or pressure, these structures are broken apart and allowed to move freely.
C is not the answer. This is inaccurate. Changing the phase of a substance does not change the size of the particle.
D is not the answer. The opposite of this statement is true. The attractive forces between particles in a solid allow the substance to hold its structure. When you apply heat or pressure, the attractive forces are overpowered and the structure is broken.