Answer:
N(AUC∩B') = 121
The number of students that like Reese's Peanut Butter Cups or Snickers, but not Twix is 121
Step-by-step explanation:
Let A represent snickers, B represent Twix and C represent Reese's Peanut Butter Cups.
Given;
N(A) = 150
N(B) = 204
N(C) = 206
N(A∩B) = 75
N(A∩C) = 100
N(B∩C) = 98
N(A∩B∩C) = 38
N(Total) = 500
How many students like Reese's Peanut Butter Cups or Snickers, but not Twix;
N(AUC∩B')
This can be derived by first finding;
N(AUC) = N(A) + N(C) - N(A∩C)
N(AUC) = 150+206-100 = 256
Also,
N(A∩B U B∩C) = N(A∩B) + N(B∩C) - N(A∩B∩C) = 75 + 98 - 38 = 135
N(AUC∩B') = N(AUC) - N(A∩B U B∩C) = 256-135 = 121
N(AUC∩B') = 121
The number of students that like Reese's Peanut Butter Cups or Snickers, but not Twix is 121
See attached venn diagram for clarity.
The number of students that like Reese's Peanut Butter Cups or Snickers, but not Twix is the shaded part
The complement of an acute angle A in degrees is 90 - A. So if the complement is 25 degrees, the angle would be 90 - 25 = 65 degrees.
Answer:

Step-by-step explanation:
Given


Required
Represent as an equation
The new position of the hook is calculated by:

This gives:


Hence, the equation is:

Answer:
The scale factor is 3 and Divide by 24 to find b's length.
Step-by-step explanation:
I think this is the answer
(Im just a bored high schooler searching this up) :P
Answer:
612
Step-by-step explanation: Im guessing ran out of time