1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
White raven [17]
3 years ago
11

A solid cylinder with a mass of 2.72 kg and a radius of 0.083 m starts from rest at a height of 4.20 m and rolls down a 88.7 ◦ s

lope. What is the translational speed of the cylinder when it leaves the incline? The acceleration of gravity is 9.81 m/s 2 . Answer in units of m/s.
Physics
1 answer:
Bingel [31]3 years ago
5 0

Explanation:

According to the law of conservation of energy ,    

             Potential energy = kinetic energy

   mgh = \frac{1}{2} \times mv^{2} + \frac{1}{2} \times I \times \omega^{2}

                  I = \frac{mr^{2}}{2}

          \omega = \frac{v}{r}

     mgh = [\frac{1}{2} \times mv^{2}] + [\frac{1}{2} \times (\frac{mr^{2}}{2}) \frac{v^{2}}{r^{2}}]

     mgh = [\frac{1}{2} \times mv^{2}] + [\frac{1}{4} \times mv^{2}]

             g \times h = \frac{3}{4} \times v^{2}

             9.8 \times 4.2 = \frac{3}{4} \times v^{2}

                  v = 7.4 m/s

thus, we can conclude that the translational speed of the cylinder when it leaves the incline is 7.4 m/s.

You might be interested in
Under what condition will the results of an experiment based on a hypothesis most likely lead to new experimentation?
MakcuM [25]
Failed experiments, uncontrolled variables, invalid data, and generalized human error
7 0
3 years ago
Starting from rest, a disk rotates about its central axis with constant angular acceleration. in 6.00 s, it rotates 44.5 rad. du
Klio2033 [76]

a. The disk starts at rest, so its angular displacement at time t is

\theta=\dfrac\alpha2t^2

It rotates 44.5 rad in this time, so we have

44.5\,\mathrm{rad}=\dfrac\alpha2(6.00\,\mathrm s)^2\implies\alpha=2.47\dfrac{\rm rad}{\mathrm s^2}

b. Since acceleration is constant, the average angular velocity is

\omega_{\rm avg}=\dfrac{\omega_f+\omega_i}2=\dfrac{\omega_f}2

where \omega_f is the angular velocity achieved after 6.00 s. The velocity of the disk at time t is

\omega=\alpha t

so we have

\omega_f=\left(2.47\dfrac{\rm rad}{\mathrm s^2}\right)(6.00\,\mathrm s)=14.8\dfrac{\rm rad}{\rm s}

making the average velocity

\omega_{\rm avg}=\dfrac{14.8\frac{\rm rad}{\rm s}}2=7.42\dfrac{\rm rad}{\rm s}

Another way to find the average velocity is to compute it directly via

\omega_{\rm avg}=\dfrac{\Delta\theta}{\Delta t}=\dfrac{44.5\,\rm rad}{6.00\,\rm s}=7.42\dfrac{\rm rad}{\rm s}

c. We already found this using the first method in part (b),

\omega=14.8\dfrac{\rm rad}{\rm s}

d. We already know

\theta=\dfrac\alpha2t^2

so this is just a matter of plugging in t=12.0\,\mathrm s. We get

\theta=179\,\mathrm{rad}

Or to make things slightly more interesting, we could have taken the end of the first 6.00 s interval to be the start of the next 6.00 s interval, so that

\theta=44.5\,\mathrm{rad}+\left(14.8\dfrac{\rm rad}{\rm s}\right)t+\dfrac\alpha2t^2

Then for t=6.00\,\rm s we would get the same \theta=179\,\rm rad.

7 0
3 years ago
Many web sites describe how to add wires to your clothing to keep you warm while riding your motorcycle. The wires are added to
Tomtit [17]

Answer:

P=42.075W

Explanation:

The power provided by a resistor (wire in this case) is given by:

P=\frac{V^2}{R}.

The resistance of a wire is given by:

R=\frac{\rho L}{A}

Where for the resistivity the one of the copper should be used: \rho=1.68\times10^{-8}\Omega m.

The area A is that of a circle, which written in terms of its diameter is:

A=\pi r^2=\pi (d/2)^2=\frac{\pi d^2}{4}

Putting all together:

P=\frac{AV^2}{\rho L}=\frac{\pi d^2V^2}{4\rho L}

Which for our values is:

P=\frac{\pi (0.00025m)^2(12V)^2}{4(1.68\times10^{-8}\Omega m)(10m)}=42.075W

7 0
3 years ago
A 40-kg box is being pushed along a horizontal smooth surface. The pushing force is 15 n directed at an angle of 15° below the
Kobotan [32]

Answer:

Acceleration of the crate is 0.362 m/s^2.

Explanation:

Given:

Mass of the box, m = 40 kg

Applied force, F = 15 N

Angle at which the force is applied, (\theta) = 15°

We have to find the magnitude of the acceleration.

Let the acceleration be "a".

FBD is attached with where we can see the horizontal and vertical component of force.

⇒ F_x=Fcos(\theta)          and             ⇒ F_y=Fsin (\theta)

⇒ F_x=15cos(15)                           ⇒ F_y=15sin (15)

⇒ Applying concept of  forces.

⇒ \sum F_x=F_n_e_t =F-f

⇒ F_n_e_t =F-f

⇒ ma =F-f       <em>  ...Newtons second law Fnet = ma</em>

⇒ a =\frac{F-f}{m}              

⇒ Plugging the values.

⇒ a =\frac{15cos(15)-0}{40}     <em>...f is the friction which is zero here.</em>

⇒ a =\frac{14.48}{40}

⇒ a=0.362\ ms^-^2

Magnitude of the acceleration of the crate is 0.362 m/s^2.

4 0
3 years ago
What particles are found in the area surrounding the necleus
Harlamova29_29 [7]
The subatomic particles found in the area surrounding the nucleus of an atom are called electrons.
6 0
3 years ago
Other questions:
  • When a container decreases in size, what will happen to an amount of gas in the container??
    5·1 answer
  • Suppose that a constant force is applied to an object. Newton's Second Law of Motion states that the acceleration of the object
    7·1 answer
  • A 2.5-cm-diameter parallel-plate capacitor has a 2.2 mm spacing. The electric field strength inside the capacitor is 6.0×104 V/m
    12·1 answer
  • How many planets are in our solar system
    13·2 answers
  • The diagram below illustrates the law of reflection.
    15·1 answer
  • a dog runs after the car, the car is travelling at an average speed of 5 m/s, the dog runs 20 m in 5s. does she catch the car
    12·1 answer
  • Number of conducting plates of a multiplate capacitor is 5. The no. Of capacitors is
    6·1 answer
  • If you jump upward with a speed of 1.70 m/s how high will you be when you stop rising?
    13·1 answer
  • Which graph shows acceleration? A graph of position (meters) versus time (seconds) has a straight line running from 0 seconds 0
    13·2 answers
  • Because white dwarfs are small, as their name implies, they are hard to see. What is a way astronomers have to find white dwarfs
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!