- Magnitude: 12.1 N.
- Direction: 17.0° to the 8 N force.
<h3>Explanation</h3>
Refer to the diagram attached (created with GeoGebra). Consider the 5 N force in two directions: parallel to the 8 N force and normal to the 8 N force.
.
.
The sum of forces on each direction will be the resultant force on that direction:
- Resultant force parallel to the 8 N force:
. - Resultant force normal to the 8 N force:
.
Apply the Pythagorean Theorem to find the magnitude of the resultant force.
(3 sig. fig.).
The size of the angle between the resultant force and the 8 N force can be found from the tangent value of the angle. Tangent of the angle:
.
Find the size of the angle using inverse tangent:
.
In other words, the resultant force is 17.0° relative to the 8 N force.
Energy is "the ability to do work". Energy is how things change and move. It takes energy to cook food, to drive to school, and to jump in the air. Different forms of Energy. Energy can take a number of different forms.
Answer:
B. decreases while his angular speed remains unchanged.
Explanation:
His angular speed will always be the same as the wheel's angular speed, which remains constant as it's in uniform motion. As for linear speed, which is defined as the product of angular speed and distance r to the center of rotation, and his distance to center is decreasing, his linear speed must be decreasing as well.
The motion of the ball on the vertical axis is an accelerated motion, with acceleration

The following relationship holds for an uniformly accelerated motion:

where S is the distance covered, vf the final velocity and vi the initial velocity.
If we take the moment the ball reaches the maximum height (let's call this height h), then at this point of the motion the vertical velocity is zero:

So we can rewrite the equation as

from which we can isolate h

(1)
Now let's assume that

is the initial velocity of the first ball. The second ball has an initial velocity that is twice the one of the first ball:

. So the maximum height of the second ball is

(2)
Which is 4 times the height we found in (1). Therefore, the maximum height of ball 2 is 4 times the maximum height of ball 1.
Answer:
what I don't know show a question mark me as brainleast