Answer:
A. 85.6 g
= 0.0856 kg.
B. 0.00027 mol/g
= 0.27 mol/kg.
C. 8.39 %
Explanation:
Given:
Molar concentration = 0.25 M
Molar weight of sucrose = 342.296 g/mol
Density of solution = 1.02 g/mL
Mass of water = 934.4 g.
Density in g/l = 1.020 g/ml * 1000ml/1 l
= 1020 g/l
Mass of solution in 1 l of solution = 1020 g
Mass of solution = mass of solvent + mass of solute
Mass of sucrose = 1020 - 934.4
= 85.6 g of sucrose in 1 l of solution.
A.
Density of sucrose = mass/volume
= molar mass/molar concentration
= 342.296 * 0.25
= 85.6 g/l
Number of moles = mass/molar mass
= 85.6/342.296
= 0.25 mol
B.
Molality = number of moles of solute/mass of solvent
= 0.25/934.4
= 0.00027 mol/g
C.
% mass of sucrose = mass of sucrose/total mass of solution * 100
= 85.6/1020 * 100
= 8.39 %
There is a very simple relationship between the three. First off, power is the amount of energy used over a certain amount of time. Energy is the capacity of carrying out that power. Lastly, time depends on how much energy you have to exert the work.
Hope this helps :)
___AlBr3 + ___K -> ___KBr + ___ Al
1 AlBr3 + 3K -> 3KBr + 1 Al
hope this helps............
It is a. oxidation-reduction
We can use the ideal gas equation to determine the temperature with the given conditions of mass of the gas, volume, and pressure. The equation is expressed
PV=nRT where n is the number of moles equal to mass / molar mass of gas. Substituting the given conditions with R = 0.0521 L atm/mol K we can find the temperature