By adding up all the individual forces of the object
Answer: c
Explanation:
C Air is a compound of two or more components that keep their own identifying properties, while water is composed of mixtures that combine to form a compound.
Answer:
0.47 N
Explanation:
Here we have a ball in motion along a circular track.
For an object in circular motion, there is a force that "pulls" the object towards the centre of the circle, and this force is responsible for keeping the object in circular motion.
This force is called centripetal force, and its magnitude is given by:

where
m is the mass of the object
is the angular velocity
r is the radius of the circle
For the ball in this problem we have:
m = 40 g = 0.04 kg is the mass of the ball
is the angular velocity
r = 30 cm = 0.30 m is the radius of the circle
Substituting, we find the force:

Answer:
0.4778 m/s
Explanation:
To solve this question, we will make use of law of conservation of momentum.
We are given that the rock's velocity is 12 m/s at 35°. Thus, the horizontal component of this velocity is;
V_x = (12 m/s)(cos(35°)) = 9.83 m/s.
Thus, the horizontal component of the rock's momentum is;
(3.5 kg)(9.83 m/s) = 34.405 kg·m/s.
Since the person is not pushed up off the ice or down into it, his momentum will have no vertical component and so his momentum will have the same magnitude as the horizontal component of the rock's momentum.
Thus, to get the person's speed, we know that; momentum = mass x velocity
Mass of person = 72 kg and we have momentum as 34.405 kg·m/s
Thus;
34.405 = 72 x velocity
Velocity = 34.405/72
Velocity = 0.4778 m/s