molar concentration of AgNO₃ solution = 0.118 mole/L
Explanation:
Because we have the volume of the solution and there is no information about the density of the solution I will asume that you ask for the molar concentration.
number of moles = mass / molecular weight
number of moles of AgNO₃ = 10 / 170 = 0.0588
molar concentration = number of moles / volume (L)
molar concentration of AgNO₃ solution = 0.0588 / 0.5
molar concentration of AgNO₃ solution = 0.118 mole/L
Learn more about:
molar concentration
brainly.com/question/1286583
#learnwithBrainly
For the answer to the question above, well presumably because the exact concentration of the composition KMnO4 solution doesn't matter. <span>If the concentration of the KMnO4 solution is important (usually in titrations etc.) then it is not allowed to use a wet bottle. The water in the bottle will dilute the KMnO4 solution and change the concentration of the said compound.</span>
Answer: stay the same because it's a solid.
Explanation:
From the reduction standard potentials;
The emf of Zinc = -0.76 V
and the emf of Aluminium = -1.66 V
In a galvanic cell the component with lower standard reduction potential gets oxidized and that it is added to the anode compartment.
Therefore. the voltage of a galvanic cell made with zinc and aluminium will be;
Voltage =Ered- Eoxd
= -0.76 - (-1.66)
= 0.9 V
Answer:
When the pressure increases to 90.0 atm , the volume of the sample is 0.01467L
Explanation:
To answer the question, we note that
P₁ = 1.00 atm
V₁ = 1.32 L
P₂ = 90 atm.
According to Boyle's law, at constant temperature, the volume of gas is inversely proportional to its pressure
That is P₁V₁ = P₂V₂
Solving the above equation for V₂ we have
that is V₂ =
=
or 0.01467L