1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KonstantinChe [14]
3 years ago
11

Where do electrons spend most of their time?

Physics
2 answers:
AVprozaik [17]3 years ago
8 0

Answer:

Before bonding, the atom's electrons spend most of their time around the nuclei of each atom.

Explanation:

Once bonded, the electrons spend most of their time between the two nuclei.

GrogVix [38]3 years ago
5 0

Answer:

around the nuclei of each atom

Explanation:

You might be interested in
Name two objects that have a high density.
Sonbull [250]

Answer:

Iron and stone

Explanation:

4 0
3 years ago
Describe the relationship between the Law of Conservation of Matter and balancing equations.
Yuliya22 [10]

Answer:

The mass of the products and reactants are the same on both sides of the equation.

The number of atoms of products and reactants are equal and hence it proves the law of conservation of mass.

.

3 0
2 years ago
Read 2 more answers
What do all elements have in common?
Sindrei [870]
The common<span> feature is that the atoms of </span>all elements<span> consist of electrons, protons, and neutrons. Hope this helps!</span>
7 0
3 years ago
The lung capacity of the average adult is 5.5 liters at the surface and only .37 liters at a depth of 100 meters. The formula to
Alika [10]
I think you can just sub the values in? unless the qn is asking for smth else?

4 0
3 years ago
In a second experiment, you decide to connect a string which has length L from a pivot to the side of block A (which has width d
Salsk061 [2.6K]

Answer:

The answer is in the explanation

Explanation:

A)

i) The blocks will come to rest when all their initial kinetic energy is dissipated by the friction force acting on them. Since block A has higher initial kinetic energy, on account of having larger mass, therefore one can argue that block A will go farther befoe coming to rest.

ii) The force on friction acting on the blocks is proportional to their mass, since mass of block B is less than block A, the force of friction acting on block B is also less. Hence, one might argue that block B will go farther along the table before coming to rest.

B) The equation of motion for block A is

m_{A}\frac{\mathrm{d} v}{\mathrm{d} t} = -m_{A}g\nu_{s}\Rightarrow \frac{\mathrm{d} v}{\mathrm{d} t} = -\nu_{s}g \quad (1)

Here, \nu_{s} is the coefficient of friction between the block and the surface of the table. Equation (1) can be easily integrated to get

v(t) = C-\nu_{s}gt \quad (2)

Here, C is the constant of integration, which can be determined by using the initial condition

v(t=0) = v_{0}\Rightarrow C = v_{0} \quad (3)

Hence

v(t) = v_{0} - \nu_{s}gt \quad (4)

Block A will stop when its velocity will become zero,i.e

0 = v_{0}-\nu_{s}gT\Rightarrow T = \frac{v_{0}}{\nu_{s}g} \quad (5)

Going back to equation (4), we can write it as

\frac{\mathrm{d} x}{\mathrm{d} t} = v_{0}-\nu_{s}gt\Rightarrow x(t) = v_{0}t-\nu_{s}g\frac{t^{2}}{2}+D \quad (6)

Here, x(t) is the distance travelled by the block and D is again a constant of integration which can be determined by imposing the initial condition

x(t=0) = 0\Rightarrow D = 0 \quad (7)

The distance travelled by block A before stopping is

x(t=T) = v_{0}T-\nu_{s}g\frac{T^{2}}{2} = v_{0}\frac{v_{0}}{\nu_{s}g}-\nu_{s}g\frac{v_{0}^{2}}{2\nu_{s}^{2}g^{2}} = \frac{v_{0}^{2}}{2\nu_{s}g} \quad (8)

C) We can see that the expression for the distance travelled for block A is independent of its mass, therefore if we do the calculation for block B we will get the same result. Hence the reasoning for Student A and Student B are both correct, the effect of having larger initial energy due to larger mass is cancelled out by the effect of larger frictional force due to larger mass.

D)

i) The block A is moving in a circle of radius L+\frac{d}{2} , centered at the pivot, this is the distance of pivot from the center of mass of the block (assuming the block has uniform mass density). Because of circular motion there must be a centripetal force acting on the block in the radial direction, that must be provided by the tension in the string. Hence

T = \frac{m_{A}v^{2}}{L+\frac{d}{2}} \quad (9)

The speed of the block decreases with time due to friction, hence the speed of the block is maximum at the beginning of the motion, therfore the maximum tension is

T_{max} = \frac{m_{A}v_{0}^{2}}{L+\frac{d}{2}} \quad (10)

ii) The forces acting on the block are

a) Tension: Acting in the radially inwards direction, hence it is always perpendicular to the velocity of the block, therefore it does not change the speed of the block.

b) Friction: Acting tangentially, in the direction opposite to the velocity of the block at any given time, therefore it decreases the speed of the block.

The speed decreases linearly with time in the same manner as derived in part (C), using the expression for tension in part (D)(i) we can see that the tension in the string also decreases with time (in a quadratic manner to be specific).

8 0
3 years ago
Other questions:
  • What value must q2 have if the electric potential at point a is to be zero?
    15·1 answer
  • What structure is located at the front edge of the retina and has a tooth like appearance?
    15·1 answer
  • What type of force pulls in two opposite directions?
    8·2 answers
  • 1. How much heat energy is required to raise the temperature of a 5 kg aluminium bar
    14·1 answer
  • Drag the tiles to the correct boxes to complete the pairs. Match each form of energy to its description. motion energy thermal e
    10·2 answers
  • In the circuit shown below, 0.25 A of current flows through a 20-Ω resistor. How much voltage is needed to produce this current?
    7·1 answer
  • Describe the types of transportation
    14·1 answer
  • In an open circuit like the picture
    10·1 answer
  • Why do you think the collapse of ecosystem was unable to recover?
    5·1 answer
  • A cow has eaten 1500KJ of stored chemical energy in the form of food. 945KJ is exerted as waste products. 495kJ is used for resp
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!