Citric Acid is the correct answer because it contains a density of 1.66 g/cm3, whereas water= 1.00 g/cm3, Olive oil= 0.93 g/cm3, Ethyl alcohol= 0.79 g/cm3
Tangential acceleration of a point on the rim of the flywheel during this spin-up process is 0.2548 m/s².
Tangential acceleration is defined as the rate of change of tangential velocity of the matter in the circular path.
Given,
Radius of flywheel (r) = 1.96 cm = 0.0196m
Angular acceleration (α)= 13.0 rad/s²
The tangential acceleration formula is at=rα
where, α is the angular acceleration, and r is the radius of the circle.
using the formula; at=rα = (13.0 rad/s²) (0.0196m) = 0.2548 m/s².
The tangential acceleration is 0.2548 m/s².
Learn more about the Tangential acceleration with the help of the following link:
brainly.com/question/15743294
#SPJ4
Answer:
13.51 nm
Explanation:
To solve this problem, we are going to use angle approximation that sin θ ≈ tan θ ≈ θ where our θ is in radians
y/L=tan θ ≈ θ
and ∆θ ≈∆y/L
Where ∆y= wavelength distance= 2.92 mm =0.00292m
L=screen distance= 2.40 m
=0.00292m/2.40m
=0.001217 rad
The grating spacing is d = (90000 lines/m)^−1
=1.11 × 10−5 m.
the small-angle
approx. Using difraction formula with m = 1 gives:
mλ = d sin θ ≈ dθ →
∆λ ≈ d∆θ = =1.11 × 10^-5 m×0.001217 rad
=0.000000001351m
= 13.51 nm
Let say the two train cars are of masses
and 
now if the speed of two cars are
and 
then we can say that the momentum of two cars before they collide is given by

here two cars are moving in opposite direction so we can say that the net momentum is subtraction of two cars momentum.
Now since in these two car motion there is no external force on them while they collide
So the momentum of two cars are always conserved.
hence we can say that the final momentum of two cars will be same after collision as it is before collision

Answer:
B. The truck and mosquito exert the same size force on each other.
Explanation:
Newton's third law (law of action-reaction) states that
"When an object A exerts a force (action) on an object B, then object B exerts an equal and opposite force (reaction) on object A"
In this case, we can call
object A = the truck
object B = the mosquito
Thereforce according to Newton's third law, the force exerted by the truck on the mosquito is equal in magnitude to the force exerted by the mosquito on the truck (and in opposite direction).
The reason for which the mosquito will experience much more damage is the fact that the mosquito's mass is much smaller than the truck's mass, and since the acceleration is inversely proportional to the mass:

the mosquito will experience a much larger deceleration than the truck, therefore much more damage.