Answer:
I guess! I will try my best! I may not know all the answers, but I can help you with most I hope!
I hope that works?
Step-by-step explanation:
Answer:
On the x- axis
Step-by-step explanation:
Answer:
The towel bar should be placed at a distance of
from each edge of the door.
Step-by-step explanation:
Given:
Length of the towel bar = 
Now given length is in mixed fraction we will convert in fraction.
To Convert mixed fraction into fraction Multiply the whole number part by the fraction's denominator, then Add that to the numerator, then write the result on top of the denominator.
can be Rewritten as 
Length of the towel bar = 
Length of the door = 
can be Rewritten as 
Length of the door = 
We need to find the distance bar should be place at from each edge of the door.
Solution:
Let the distance of bar from each edge of the door be 'x'.
So as we placed the towel bar in the center of the door it divides into two i.e. '2x'
Now we can say that;

Now we will take LCM to make the denominators common we get;

Now denominators are common so we will solve the numerators.

Or 
Hence The towel bar should be placed at a distance of
from each edge of the door.
The total cost is given by the equation:
C(t) = 45 + 25(h-1) where h is the number of hours worked.
We can check for each option in turn:
Option A:
Inequality 5 < x ≤ 6 means the hour is between 5 hours (not inclusive) to 6 hours (inclusive)
Let's take the number of hours = 5
C(5) = 45 + (5-1)×25 = 145
Let's take the number of hours = 6
Then substitute into C(6) = 45 + (6-1)×25 = 170
We can't take 145 because the value '5' was not inclusive.
Option B:
The inequality is 6 < x ≤ 7
We take number of hours = 6
C(6) = 25(6-1) + 45 = 170
We take number of hours = 7
Then C(7) = 25(7-1) + 45 = 195
Option C:
The inequality is 5 < x ≤ 6
Take the number of hours = 5
C(5) = 25(5-1) + 45 = 145
Take the number of hours = 6
C(6) = 25(6-1) + 45 = 170
We can't take the value 145 as '5' was not inclusive in the range, but we can take 170
Option D:
6 < x ≤ 7
25(6-1) + 45 < C(t) ≤ 25(7-1) + 45
170 < C(t) ≤ 195
Correct answer: C