Well the the answer is 70.8c but if you round it up it is 71c which I choice and got it correct so the answer is 71c
The volume of the 0.279 M Ca(OH)₂ solution required to neutralize 24.5 mL of 0.390 M H₃PO₄ is 51.4 mL
<h3>Balanced equation </h3>
2H₃PO₄ + 3Ca(OH)₂ —> Ca₃(PO₄)₂ + 6H₂O
From the balanced equation above,
- The mole ratio of the acid, H₃PO₄ (nA) = 2
- The mole ratio of the base, Ca(OH)₂ (nB) = 3
<h3>How to determine the volume of Ca(OH)₂ </h3>
- Molarity of acid, H₃PO₄ (Ma) = 0.390 M
- Volume of acid, H₃PO₄ (Va) = 24.5 mL
- Molarity of base, Ca(OH)₂ (Mb) = 0.279 M
- Volume of base, Ca(OH)₂ (Vb) =?
MaVa / MbVb = nA / nB
(0.39 × 24.5) / (0.279 × Vb) = 2/3
9.555 / (0.279 × Vb) = 2/3
Cross multiply
2 × 0.279 × Vb = 9.555 × 3
0.558 × Vb = 28.665
Divide both side by 0.558
Vb = 28.665 / 0.558
Vb = 51.4 mL
Thus, the volume of the Ca(OH)₂ solution needed is 51.4 mL
Learn more about titration:
brainly.com/question/14356286
Answer:
A. maintain electrical neutrality in the half-cells via migration of ions
Explanation:
Salt bridge -
For an electrochemical reaction , involving an anode and a cathode , both the electrodes are connect via a salt bridge to complete the circuit for the reaction .
One of the very important use of a salt bridge is to maintain the electrical neutrality of the respective half cells , which is achieved by the movement of ions .
Hence , from the given options , the correct option is ( a ) .
2C3H8+ 702--->6CO2+8H20
FROM Equation above 2 moles of C3H8 reacted with 7 moles of oxygen to form 6 moles of c02 plus 8 molesof H2O
the moles of c3H8 reacted is = MASS/ R.F.M
THE R.F.M =48+8=44
Number of moles is hence 0.025/44=5.68x10^-4
since ratio of C3H8 to O2 is 2:7 Therefore moles of O2 reacted is 1.989 x10^-3
mass= r.f.m x number of moles
(1.989x10^-3) x 32 =0.064g