Each carbon atom is covalently bonded to four other carbon atoms. A lot of energy is needed to separate the atoms in diamond. This is because covalent bonds are strong, and diamond contains very many covalent bonds. This makes diamond's melting point and boiling point very high.
Answer:

Explanation:
Hello,
In this case, since the pH defines the concentration of hydrogen:
![pH=-log([H^+])](https://tex.z-dn.net/?f=pH%3D-log%28%5BH%5E%2B%5D%29)
![[H^+]=10^{-pH}=10^{-3.4}=3.98x10^{-4}](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D10%5E%7B-pH%7D%3D10%5E%7B-3.4%7D%3D3.98x10%5E%7B-4%7D)
And the percent ionization is:
![\% \ ionization=\frac{[H^+]}{[HA]}*100\%](https://tex.z-dn.net/?f=%5C%25%20%5C%20ionization%3D%5Cfrac%7B%5BH%5E%2B%5D%7D%7B%5BHA%5D%7D%2A100%5C%25)
We compute the concentration of the acid, HA:
![[HA]=\frac{[H^+]}{\% \ ionization}*100\%=\frac{3.98x10^{-4}}{66\%} *100\%\\\\](https://tex.z-dn.net/?f=%5BHA%5D%3D%5Cfrac%7B%5BH%5E%2B%5D%7D%7B%5C%25%20%5C%20ionization%7D%2A100%5C%25%3D%5Cfrac%7B3.98x10%5E%7B-4%7D%7D%7B66%5C%25%7D%20%20%2A100%5C%25%5C%5C%5C%5C)
![[HA]=6.03x10^{-4}](https://tex.z-dn.net/?f=%5BHA%5D%3D6.03x10%5E%7B-4%7D)
Thus, the Ka is:
![Ka=\frac{[H^+][A^-]}{[HA]}=\frac{3.98x10^{-4}*3.98x10^{-4}}{6.03x10^{-4}}\\ \\Ka=2.63x10^{-4}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BH%5E%2B%5D%5BA%5E-%5D%7D%7B%5BHA%5D%7D%3D%5Cfrac%7B3.98x10%5E%7B-4%7D%2A3.98x10%5E%7B-4%7D%7D%7B6.03x10%5E%7B-4%7D%7D%5C%5C%20%20%5C%5CKa%3D2.63x10%5E%7B-4%7D)
So the pKa is:

Regards.
In titration, the moles of acid equal moles of base. You were given that 22.75ml of 0.215M NaOH is used, so calculate the number of moles of that base the experiment used in total. After that because you know mol base = mol acid, whatever amount of base you use must be the total amount of acid present in the solution. You were given the volume of the acid, and you have just found the total mols of acid. Using these two information, solve for the concentration. And one more thing, even though I'm pretty sure it won't affect your answer, you should always convert things to the proper units. Since the concentration we're talking about in this problem is molarity, which has the unit mol/L, you should always have all of your numbers in these units. It just make it simpler and will not confuse you
Answer:
Colors of transition metal compounds are due to two types of electronic transitions. Due to the presence of unpaired d electrons, transition metals can form paramagnetic compounds. Transition metals are conductors of electricity, possess high density and high melting and boiling points.
Explanation:
Answer:
14 mol e⁻
Explanation:
Step 1: Write the balanced half-reaction for the reduction of permanganate to manganese
8 H⁺(aq) + 7 e⁻ + MnO₄⁻(aq) ⇒ Mn(s) + 4 H₂O(l)
Step 2: Calculate the moles corresponding to 110 g of manganese
The molar mass of Mn is 55 g/mol.
110 g × 1 mol/55 g = 2 mol
Step 3: Calculate the number of moles of electrons needed to produce 2 moles of Mn
According to the half-reaction, 7 moles of electrons are required to produce 1 mole of Mn.
2 mol Mn × 7 mol e⁻/1 mol Mn = 14 mol e⁻