Answer:
Option D.
Explanation:
First we convert the given reactant masses into moles, using their respective molar masses:
- 4.00 g H₂ ÷ 2 g/mol = 2 mol H₂
- 6.20 g P₄ ÷ 124 g/mol = 0.05 mol P₄
0.05 moles of P₄ would react completely with (6*0.05) 0.3 moles of H₂. There are more H₂ moles than required, meaning H₂ is in excess and P₄ is the limiting reactant.
Now we<u> calculate how many PH₃ moles could be formed</u>, using the <em>number of moles of the limiting reactant</em>:
- 0.05 mol P₄ *
= 0.2 mol PH₃
Finally we <u>convert 0.2 mol PH₃ into grams</u>, using its <em>molar mass</em>:
- 0.2 mol PH₃ * 34 g/mol = 6.8 g
So the correct answer is option D.
The answer is (3) 3. The outer shell of an atom is called valence shell. And the ground state is the lowest energy state of an atom. Aluminum has a electron distribution of 2, 8, 3. So the outer shell has 3 electrons.
This
reaction is called the electrolysis of water. The balanced reaction is:
2H2O = 2H2 + O2
<span>
We are given the amount of water for the electrolysis reaction. This
will be the starting point of our calculation.
45.6 grams H2O (1 mol H2O / 18.02 g H2O) (1 mol O2 / 2 mol H2O) = 1.27 mol O2
V = nRT/P = </span><span>1.27 mol O2 (0.08206 atm L / mol K) (301 K) / 1.24 atm
V = 25.20 L O2</span>
Cool liquid from 314 K to 273 K, freeze liquid at 273 K, and cool solid to 263 K.
Answer:
<em>Hi Todoroki here!!! </em>
Explanation:
Chlorine has the electron configuration [Ne]3s 2 3p 5, with the seven electrons in the third and outermost shell acting as its valence electrons. Like all halogens, it is thus one electron short of a full octet, and is hence a strong oxidising agent, reacting with many elements in order to complete its outer shell.
<em>Your welcome!!</em>