Answer:
The magnesium will burn until consumed entirely. There is much more oxygen available in the atmosphere than needed to consume the magnesium. Thus the magnesium is the limiting reactant because it determines the amount of product formed.
Explanation:
Mg produces less amount of MgO than O2; therefore Mg is the limiting reagent. O2 produces more amount of MgO than Mg; therefore O2 is the excess reagent.
MnCl2(aq) is an ionic compound which will have the releasing of 2 Cl⁻ ions ions in water for every molecule of MnCl2 that dissolves.
MnCl2(s) --> Mn+(aq) + 2 Cl⁻(aq)
[Cl⁻] = 0.92 mol MnCl2/1L × 2 mol Cl⁻ / 1 mol MnCl2 = 1.8 M
The answer to this question is [Cl⁻] = 1.8 M
Answer:
In 1827, Brown observed, using a microscope, that small particles ejected from pollen grains suspended in water executed a kind of continuous and jittery movement, this was named “Brownian motion”. ... This random movement of particles suspended in a fluid is now called after him.
Explanation:
HOPE this helps :)
Answer:
The ideal gas law is expressed mathematically by the ideal gas equation as follows;
P·V = n·R·T
Where;
P = The gas pressure
V = The volume of the gas
n = The number of moles of the gas present
R = The universal gas constant
T = The temperature of the gas
A situation where the ideal gas law is exhibited is in the atmosphere just before rainfall
The atmospheric temperature of the area expecting rainfall drops, (when there is appreciable blockage of the Sun's rays by cloud covering) followed by increased wind towards the area, which indicates that the area was in a state of a low pressure, 'P', and or volume, 'V', or a combination of both low pressure and volume P·V
When the entry flow of air into the area is observed to have reduced, the temperature of the air in the area is simultaneously sensed to have risen slightly, therefore, the combination of P·V is seen to be proportional to the temperature, 'T', and the number of moles of air particles, 'n' in the area
Explanation: