Answer:
201.6 N
Explanation:
m = mass of disk shaped merry-go-round = 125 kg
r = radius of the disk = 1.50 m
w₀ = Initial angular speed = 0 rad/s
w = final angular speed = 0.700 rev/s = (0.700) (2π) rad/s = 4.296 rad/s
t = time interval = 2 s
α = Angular acceleration
Using the equation
w = w₀ + α t
4.296 = 0 + 2α
α = 2.15 rad/s²
I = moment of inertia of merry-go-round
Moment of inertia of merry-go-round is given as
I = (0.5) m r² = (0.5) (125) (1.50)² = 140.625 kgm²
F = constant force applied
Torque equation for the merry-go-round is given as
r F = I α
(1.50) F = (140.625) (2.15)
F = 201.6 N
Answer:
The value is 
Explanation:
From the question we are told that
The diameter of the ring is 
The length of the solenoid is 
The diameter of the solenoid is 
The number of turns is N = 1500
The change in current in the solenoid is 
The time taken is 
Generally the radius of the ring is

=> 
=> 
Generally the area of the ring is mathematically represented as

=>
=> 
Generally the induced emf is mathematically represented as

Here

Here
is the permeability of free space with value

So

=> 
So

=> 
Answer:
so his far point according to this pair of glass is 200 cm
Explanation:
power of old pair of corrective glasses is given as

now we have



now we know that for normal vision the maximum distance of vision is for infinite distance
so by lens formula we have



so his far point according to this pair of glass is 200 cm
Answer:
B. The current increases.
Explanation:
As we know that rate of flow of charge through the conductor is known as electric current
So we have

here we know that charge Q flowing through the conductor is constant while the time in which it passes through it is decreased
so we can say that the ratio of charge and time will increase
so here we have

So correct answer will be
B. The current increases.