Answer:
∆L=aL∆T
Explanation:
that's the answer for your Question
Answer:
The velocity of the frozen rock at
is -14.711 meters per second.
Explanation:
The frozen rock experiments a free fall, which is a type of uniform accelerated motion due to gravity and air viscosity and earth's rotation effect are neglected. In this case, we need to find the final velocity (
), measured in meters per second, of the frozen rock at given instant and whose kinematic formula is:
(Eq. 1)
Where:
- Initial velocity, measured in meters per second.
- Gravity acceleration, measured in meters per square second.
- Time, measured in seconds.
If we get that
,
and
, then final velocity is:


The velocity of the frozen rock at
is -14.711 meters per second.
Answer:
Check the explanation
Explanation:
When we have an object in periodic motion, the amplitude will be the maximum displacement from equilibrium. Take for example, when there’s a back and forth movement of a pendulum through its equilibrium point (straight down), then swings to a highest distance away from the center. This distance will be represented as the amplitude, A. The full range of the pendulum has a magnitude of 2A.
position = amplitude x sine function(angular frequency x time + phase difference)
x = A sin(ωt + ϕ)
x = displacement (m)
A = amplitude (m)
ω = angular frequency (radians/s)
t = time (s)
ϕ = phase shift (radians)
Kindly check the attached image below to see the step by step explanation to the question above.
Answer a would be correct since velocity is a vector and has a magnitude and a direction. In this case v₁ = - v₂.