Answer:
5 m/s2, left
Explanation:
We can solve the problem by applying Newton's second law of motion, which states that:
where:
is the net force acting on an object
m is the mass of the object
a is its acceleration
In this problem, we have:
(to the left) is the net force on the object
m = 2.0 kg is the mass
So, the acceleration is:
in the same direction as the force (left).
Answer:
Electric field E = kQ/r^2
Distance between charges = 6.30 - (-4.40) = 10.70m
Say the neutral point, P, is a distance d from q1. This means it is a distance (10.70 - d) from q2.
Field from q1 at P = k(-9.50x^10^-6) / d^2
Field from q2 at P = k(-8.40x^10^-6) / (10.70-d)^2
These fields are in opposite directions and are equal magnitudes if the resultant field = 0
k(-9.50x^10^-6) / d^2 = k(-8.40x^10^-6) / (10.70-d)^2
9.50 / d^2 =8.40 / (10.70-d)^2
d^2 / (10.70-d)^2 = 9.50/8.40 = 1.131
d/(10.70-d) = sqrt(1.1331) = 1.063
d = 1.063 ((10.70-d)
= 10.63 - 1.063d
2.063d = 10.63
d = 5.15m
The y coordinate where field is zero is 6.30 - 5.15 = 1.15m
Explanation:
Answer:
36g
Explanation:
Given parameters:
Number of moles of H₂O = 2moles
Unknown:
Mass of H₂O = ?
Solution:
To solve this problem, use the expression below:
Mass of H₂O = number of moles x molar mass
Molar mass of H₂O = 2(1) + 16 = 18g/mol
Mass of H₂O = 2 x 18 = 36g
Answer:
All color wavelengths are being absorbed
Explanation:
There is no color reflected when the color is black