Answer:
ACTIVATION OF PHOSPHORYLASE KINASE AND ALLOSTERICALLY ACTIVATION OF PHOSPHORYLASE KINASE B
Explanation:
In a contracting skeletal muscle, there is a rapid need of ATP by the muscle cell. The energy need is obtained by the degradation of glycogen into glucose which then enters glycolysis. Muscle contraction causes muscle depolarization in which there is the rapid influx of calcium ions from the sarcoplasmic reticulum into the sacroplasm of the myocytes. This in turn causes the binding of calcium ion with calmodulin which thenb activates phosphorylase kinase from which it allosterically activate the b form of the enzyme needed for the conversion of glycogen to glucose. The other options do not occur as a result of increase in cytolic calcium concentration.
4 infiltration percolation!! I think! Correct me if I’m wrong
<span>Of the answers listed option B looks like the most complete. Ie "Check for the presence of alpha, beta, and gamma particles." the significant presence of these particles is a specific indicator of radioactive decay, i.e: unstable atoms spontaneously undergoing a nuclear reaction.</span>
You have to figure out a way to write the two unknown abundances in terms of one variable.
The total abundance is 1 (or 100%). So if you say the abundance for the first one is X then the abundance for the second one has to be 1-X (where X is the decimal of the percentage so say 0.8 for 80%).
203(X) + 205(1-X) = 204.4
Then you just solve for X to get the percentage for TI-203.
And then solve for 1-X to get the percentage for TI-205.
After that the higher percentage would be the most abundant.
203x + 205 - 205x = 204.4
-2x + 205 = 204.4
-2x = -0.6
x = 0.3
1-x = 0.7
Then the TI-205 would have the highest percentage and would be the most abundant.
1 is b 2 is a 3 is d 4 is a 5 is c