It means that electric charge exists in integral multiples of an elementary unit of charge rather taking on continuous values.
Since Millikan was the first to measure the value of the electronic charge in his famous "oil drop" experiment, he may be the one given credit for discovering quantization of charge.
Answer:
I found the experience tasking
Explanation:
I wouldn't say it was hard, neither was it easy. I'd rather go for something like it being tasking. It's worthy of note that it was my first time, and I think it's very normal especially when one hasn't been doing something of that nature previously. Of course I did my draft, which unsurprisingly happened to be not good enough, and I had to look for templates to guide me through the acceptable way.
I still did it in my own way, but in the right way. Ever since then though, I have never stuttered when writing application letters, as it had since then seem inborn
Answer:
Yes if it continues in that direction.
Explanation:
The wavelength of the interfering waves is 3.14 m.
<h3>Calculation:</h3>
The general equation of a standing wave is given by:
y = 2A sin (kx) cos (ωt) ......(1)
The given equation represents the standing wave produced by the interference of two harmonic waves:
y = 3 sin (2x) cos 5t .......(2)
Comparing equations (1) and (2):
k = 2
We know that,
k = 2π/λ
λ = 2π/k
λ = 2 (3.14)/ 2
λ = 3.14 m
Therefore, the wavelength of the interfering waves is 3.14 m.
I understand the question you are looking for is this:
Two harmonic waves traveling in opposite directions interfere to produce a standing wave described by y = 3 sin (2x) cos 5t where x is in m and t is in s. What is the wavelength of the interfering waves?
Learn more about interfering waves here:
brainly.com/question/2910205
#SPJ4