Answer:
incorporates both ionic bonding and covalent bonding.
Explanation:
A covalent bond is formed when an element shares its valence electron with another element. This bond is formed between two non metals.
An ionic bond is formed when an element completely transfers its valence electron to another element. The element which donates the electron is known as electropositive element and the element which accepts the electrons is known as electronegative element. This bond is formed between a metal and an non-metal.
For formation of a neutral ionic compound, the charges on cation and anion must be balanced. The cation is formed by loss of electrons by metals and anions are formed by gain of electrons by non metals.
Here potassium is having an oxidation state of +1 called as
cation and nitrate
is an anion with oxidation state of -1. Thus they combine and their oxidation states are exchanged and written in simplest whole number ratios to give neutral
.
is formed by sharing of electrons between two non metals nitrogen and oxygen.
Thus
incorporates both ionic bonding and covalent bonding.
The change of state that has been given in the question is called sublimation. It is actually the process in which a solid gets directly converted to gas without changing into liquid. I hope that this is the answer that you were looking for and the answer has actually come to your desired help.
Answer:
The answer is A
Explanation:
Image A has the same species while image B has more species than A.
Answer:
Concept: Chemical Analysis
- You need to start by graphing the data and then analyzing it.
- We can see that the horse has a distance in meters of 980 at the end of the 10 seconds hence it is the fastest.
- The horse line has a linearly representation, while the alternate line has parabolic tendencies towards the end. The steeper line indicates a faster change in time or velocity which results in a greater distance traveled indicating that the horse is faster.
- *I have confidence you can graph that*
Answer:
i and ii
Explanation:
In the aerobic oxidation of glucose, the electrons formed are transferred to O2 after several others transfer reactions like passing through coenzymes NAD+ and FAD