02(g) = 0 kj/mol
<span>CO2 (g) = -393.5 kj/mol </span>
<span>H20(g) = -241.8 kj/mol </span>
<span>H total = -5094 kJ
</span>5094kJ = [8(-393.5) + 9(-241.8)] - [X + 12.5(0)]
<span>-5094 kJ = [-3148 + (-2176.2)] - [x + 0] </span>
<span>-5094 kJ = -5324.2 - x </span>
<span>add -5324.2 to -5094 </span>
<span>to get +230.2 = -x </span>
<span>move the negative to the other side </span>
<span>and you get -230 kj/mol</span>
There are 6.022 × 10²³ atoms in 39.948 g of argon and 4.0026 g of helium.
Explanation:
39.945 g/mole is the molar mass of argon so 39.948 g of argon are equal to 1 mole of argon.
4.0026 g/mole is the molar mass of helium so 4.0026 g of helium are equal to 1 mole of helium.
We know that Avogadro's number tell us the number of particles in 1 mole of substance which is 6.022 × 10²³.
So in 39.948 g of argon and 4.0026 g of helium contains the same number of atoms, 6.022 × 10²³.
Learn more about:
Avogadro's number
brainly.com/question/14148121
brainly.com/question/1445383
brainly.com/question/1528951
#learnwithBrainly
Answer:
All of the elements in a period have the same number of atomic orbitals. For example, every element in the top row (the first period) has one orbital for its electrons. All of the elements in the second row (the second period) have two orbitals for their electrons.
Explanation: