Answer:
well the answers are 180 and 240 obviously
Explanation:
The mass m of the object = 5.25 kg
<h3>Further explanation</h3>
Given
k = spring constant = 3.5 N/cm
Δx= 30 cm - 15 cm = 15 cm
Required
the mass m
Solution
F=m.g
Hooke's Law
F = k.Δx

Answer:
90,000 J
Explanation:
Kinetic energy can be found using the following formula.

where <em>m </em>is the mass in kilograms and <em>v</em> is the velocity in m/s.
We know the object has a mass of 50 kilograms. We also know it is a traveling at a rate of 60 m/s. Velocity is the speed of something, so the velocity of the object is 60 m/s.
<em>m</em>=50
<em>v</em>=60
Substitute these values into the formula.

First, evaluate the exponent: 60^2. 60^2 is the same as multiplying 60, 2 times.
60^2=60*60=3,600

Multiply 50 and 3,600

Multiply 1/2 and 3,600, or divide 3,600 by 2.

Add appropriate units. Kinetic energy uses Joules, or J.

The kinetic energy of the object is 90,000 Joules
Given the equation for the Speed of a Satellite
v = SqRt{Gravitational Constant}{Mass of Earth} divided by the radius given in your problem
we have:
(square root whole term on right side)
v = G Me
———
r
so. (6.67x10^-11)(5.97x10^24)
___________________
(8.0x10^6)
v = 7055 m/s (which is reasonable)
so utilize the Kinetic Energy Formula
KE = 1/2mv^2
KE = 1/2(200)(7055)^2
KE = 4.977x10^9 J
Answer:
The distance is 
Explanation:
From the question we are told that
The wavelength of the light is 
The distance between the slit is 
The between the first and second dark fringes is 
Generally fringe width is mathematically represented as

Where D is the distance of the slit to the screen
Hence

substituting values

