Answer:
(3S)-2-chloro-2,3-dimethylpentane is produced exclusively.
Explanation:
Electrophilic addition to (3S)-2,3-dimethylpent-1-ene proceeds through a carbocationic intermediate.
In the first step,
adds onto double bond to produce more stable tertiary carbocation. (protonation)
In the second step,
adds onto carbocation to produce (3S)-2-chloro-2,3-dimethylpentane exclusively.(nucleophilic addition)
So, option (d) is correct.
Answer:
9.1
Explanation:
Step 1: Calculate the basic dissociation constant of propionate ion (Kb)
Sodium propionate is a strong electrolyte that dissociates according to the following equation.
NaC₃H₅O₂ ⇒ Na⁺ + C₃H₅O₂⁻
Propionate is the conjugate base of propionic acid according to the following equation.
C₃H₅O₂⁻ + H₂O ⇄ HC₃H₅O₂ + OH⁻
We can calculate Kb for propionate using the following expression.
Ka × Kb = Kw
Kb = Kw/Ka = 1.0 × 10⁻¹⁴/1.3 × 10⁻⁵ = 7.7 × 10⁻¹⁰
Step 2: Calculate the concentration of OH⁻
The concentration of the base (Cb) is 0.24 M. We can calculate [OH⁻] using the following expression.
[OH⁻] = √(Kb × Cb) = √(7.7 × 10⁻¹⁰ × 0.24) = 1.4 × 10⁻⁵ M
Step 3: Calculate the concentration of H⁺
We will use the following expression.
Kw = [H⁺] × [OH⁻]
[H⁺] = Kw/[OH⁻] = 1.0 × 10⁻¹⁴/1.4 × 10⁻⁵ = 7.1 × 10⁻¹⁰ M
Step 4: Calculate the pH of the solution
We will use the definition of pH.
pH = -log [H⁺] = -log 7.1 × 10⁻¹⁰ = 9.1
Answer:
1
Explanation:
because there barely eating and there eating protien and healthy foods
The Nernst equation allows us to predict the cell potential for voltaic cells under conditions other than the standard conditions of 1M, 1 atm, 25°C. The effects of different temperatures and concentrations may be tracked in terms of the Gibbs energy change ΔG. This free energy change depends upon the temperature & concentrations according to ΔG = ΔG° + RTInQ where ΔG° is the free energy change under conditions and Q is the thermodynamic reaction quotient. The free energy change is related to the cell potential Ecell by ΔG= nFEcell
so for non-standard conditions
-nFEcell = -nFE°cell + RT InQ
or
Ecell = E°cell - RT/nF (InQ)
which is called Nernst equation.