Answer:
The enthalpy for given reaction is 232 kilo Joules.
Explanation:
...[1]
..[2]
..[3]
..[4]
2 × [2] + [3] - [1] ( Using Hess's law)



The enthalpy for given reaction is 232 kilo Joules.
B. 11,540
<h3>Further explanation
</h3>
The atomic nucleus can experience decay into 2 particles or more due to the instability of its atomic nucleus.
Usually radioactive elements have an unstable atomic nucleus.
General formulas used in decay:

T = duration of decay
t 1/2 = half-life
N₀ = the number of initial radioactive atoms
Nt = the number of radioactive atoms left after decaying during T time
Nt=25 g
No=100 g
t1/2=5770 years

We can use the ideal gas equation:
PV = nRT
P = 202.6kPa = 202600 Pa (You have to
multiply by 1000)
n = 0.050 mole
R = 0.082 atm*l/(K*mol)
T = 400K
We will have to convert from Pa to atm or
viceversa.
101325 Pa________1 atm
202600 Pa________x = 2.00 atm
2atm*V = 0.050 mole*0.082 atm*l/(K*mol)* 400K
V = 0.050 mole*0.082 atm*l/(K*mol)* 400K/2atm
= 0.82 liters = 820 mililiters
Answer:
B. The value of q is positive
Explanation:
Pretty sure it’s sodium oxide.. ?