Answer:
11060M Joules, where M is the mass of the diver in kg
Explanation:
Mass of the skydiver missing, we're assuming it's M.
It's total energy is the sum of the contribution of his kinetic energy (K)- since he's moving at 50 m/s, and it's potential energy (U), since he's subject to earth gravity.
Energy is the sum of the two, so 
Answer:
460 g
Explanation:
Heat lost by the warm water = heat gained by the cold water
-mCΔT = mCΔT
-m (4.184 J/g/K) (37°C − 85°C) = (1000 g) (4.184 J/g/K) (37°C − 15°C)
-m (37°C − 85°C) = (1000 g) (37°C − 15°C)
-m (-48°C) = (1000 g) (22°C)
m = 458 g
Rounded to two significant figures, you need a mass of 460 g of water.
Answer:
1/8
Explanation:
17,100 years is 3 times the half-life of 5,700 years. After each half-life, half remains, so the amount remaining after 3 half-lives is ...
(1/2)(1/2)(1/2) = 1/8
1/8 of the sample remains after 17,100 years.
Answer:
Given that
speed u=4*10^6 m/s
electric field E=4*10^3 N/c
distance b/w the plates d=2 cm
basing on the concept of the electrostatices
now we find the acceleration b/w the plates to find the horizontal distance traveled by the electron when it hits the plate.
acceleration a=qE/m=
=
m/s
now we find the horizontal distance traveled by electrons hit the plates
horizontal distance
![X=u[2y/a]^{1/2}](https://tex.z-dn.net/?f=X%3Du%5B2y%2Fa%5D%5E%7B1%2F2%7D)
=![4*10^6[2*2*10^{-2}/7*10^{14}]^{1/2}](https://tex.z-dn.net/?f=4%2A10%5E6%5B2%2A2%2A10%5E%7B-2%7D%2F7%2A10%5E%7B14%7D%5D%5E%7B1%2F2%7D)
=
= 3 cm