Answer:
The change in potential energy and kinetic energy are 980 MJ and 148.3 MJ.
Explanation:
Given that,
Mass of aircraft = 10000 kg
Speed = 620 km/h = 172.22 m/s
Altitude = 10 km = 1000 m
We calculate the change in potential energy





For g = 10 m/s²,
The change in potential energy will be 1000 MJ.
We calculate the change in kinetic energy





For g = 10 m/s²,
The change in kinetic energy will be 150 MJ.
Hence, The change in potential energy and kinetic energy are 980 MJ and 148.3 MJ.
Hello Again! I think the Answer might be 220 m! ( 1/2) ( 21 m/s + 0 m/s) (21 s) = 220 m
Answer:
There would be complete destructive interference.
Explanation:
This is because since the waves are completely out of phase, the phase difference is half wavelength, that is the phase angle is 180°. The vibrating sources are 180° out of phase with each other.
Since this is the case, the crest of the one source meets the trough of the other, this causes the resultant vibrational wave to cancel out, thus producing a destructive interference pattern.
Since the vibrating sources are completely out of phase, every point they meet is completely out of phase, so the resultant interference pattern would produce a complete destructive interference pattern of no wave.
Answer:
Explanation:
According to <u>Coulomb's Law:</u>
<em>"The electrostatic force
between two point charges
and
is proportional to the product of the charges and inversely proportional to the square of the distance
that separates them, and has the direction of the line that joins them".</em>
<em />
Mathematically this law is written as:
Where:
is the electrostatic force
is the Coulomb's constant
and
are the electric charges
is the separation distance between the charges
Solving:
Answer:
The final temperature of the two objects is the same.
Explanation:
The expression for the heat energy in terms of mass, specific heat and the change in the temperature is as follows:

Here, Q is the heat energy, m is the mass of the object, c is the specific heat and
are the final temperature and initial temperature.
According to the given question, Two objects of the same mass, but made of different materials, are initially at the same temperature. Equal amounts of heat are added to each object.
............(1)
.............(2)
From (1) and (2),



Therefore, the final temperature of the two objects is the same.