1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dedylja [7]
3 years ago
11

2 Points

Physics
1 answer:
yulyashka [42]3 years ago
6 0

The  force applied to lift the crate is 171 N

Explanation:

The lever works on the principle of equilibrium of moments, so we can write:

F_i d_i = F_o d_o

where

F_i is the  force in input

d_i is the arm of the input force

F_o is the output force

d_o is the arm of the output force

For the lever in this problem, we have:

d_i = 0.25 m

d_o = 0.19 m

F_i = 130 N (force applied)

Solving the equation for F_o, we find the force applied to lift the crate:

F_o = \frac{F_i d_i}{d_o}=\frac{(130)(0.25)}{0.19}=171 N

Learn more about levers:

brainly.com/question/5352966

#LearnwithBrainly

You might be interested in
1.
rusak2 [61]

Answer:

9.6

Explanation:

to convert km to miles multiply by 1.609

7 0
3 years ago
Which events may occur when ocean salinity increases? Check all that apply.
Pavlova-9 [17]
The answer is number two, number four, and number one
3 0
3 years ago
Read 2 more answers
In a 350-m race, runner A starts from rest and accelerates at 1.6 m/s^2 for the first 30 m and then runs at constant speed. Runn
kifflom [539]

Answer:

B can take 0.64 sec for the longest nap .

Explanation:

Given that,

Total distance = 350 m

Acceleration of A = 1.6 m/s²

Distance = 30 m

Acceleration of B = 2.0 m/s²

We need to calculate the time for A

Using equation of motion

s=ut+\dfrac{1}{2}at_{A}^2

Put the value in the equation

30=0+\dfrac{1}{2}\times1.6\times t_{A}^2

t_{A}=\sqrt{\dfrac{30\times2}{1.6}}

t_{A}=6.12\ sec

We need to calculate the time for B

Using equation of motion

s=ut+\dfrac{1}{2}at_{B}^2

Put the value in the equation

30=0+\dfrac{1}{2}\times2.0\times t_{B}^2

t_{B}=\sqrt{\dfrac{30\times2}{2.0}}

t_{B}=5.48\ sec

We need to calculate the time for longest nap

Using formula for difference of time

t'=t_{A}-t_{B}

t'=6.12-5.48

t'=0.64\ s

Hence, B can take 0.64 sec for the longest nap .

4 0
3 years ago
It takes a minimum distance of 57.46 m to stop a car moving at 13.0 m/s by applying the brakes (without locking the wheels). Ass
vivado [14]

Answer:

The minimum stopping distance when the car is moving at

29.0 m/sec = 285.94 m

Explanation:

We know by equation of motion that,

v^{2}=u^{2}+2\cdot a \cdot s

Where, v= final velocity m/sec

u=initial velocity m/sec

a=Acceleration m/Sec^{2}

s= Distance traveled before stop m

Case 1

u=  13 m/sec, v=0, s= 57.46 m, a=?

0^{2} = 13^{2}  + 2 \cdot a \cdot57.46

a = -1.47 m/Sec^{2} (a is negative since final velocity is less then initial velocity)

Case 2

u=29 m/sec, v=0, s= ?, a=-1.47 m/Sec^{2} (since same friction force is applied)

v^{2} = 29^{2}  - 2 \cdot 1.47 \cdot S

s = 285.94 m

Hence the minimum stopping distance when the car is moving at

29.0 m/sec = 285.94 m

4 0
3 years ago
A car with mass m traveling at speed v has kinetic energy k. what is the kinetic energy of a second car that has the same mass m
vampirchik [111]
Kinetic energy, KE, is modeled by the formula KE =  \frac{1}{2}mv^2, where m is the mass in kg and v is the velocity in m/s.

In this scenario, mass and one-half are constant but the velocity changes. 

You can see that by squaring twice the velocity, that is equal to four times the original KE. Therefore, the answer is 4k.
7 0
3 years ago
Other questions:
  • Explain the versatility of epithelial tissue
    6·2 answers
  • Darren drives to school in rush hour traffic and averages 28 mph. He returns home in mid-afternoon when there is less traffic an
    5·1 answer
  • Does a comets tail always trail along behind it in its orbit?
    10·1 answer
  • When the distance between two masses is doubled, the gravitational attraction between
    10·1 answer
  • You have been hired to design a spring-launched roller coaster that will carry two passengers per car. The car goes up a 12-m-hi
    5·1 answer
  • A 5 kg bucket is lifted from the ground into the air by pulling in 10 meters of rope with linear density of 2 kg/m at a constant
    7·1 answer
  • What's true about the elliptical path that the planets follow around the sun? A. A line can be drawn from the planet to the sun
    14·1 answer
  • If the magnification produced by a lens has a negative value, the image will be
    5·2 answers
  • A football player kicks a ball with an initial velocity of 15 m/s at an angle of 43° above the horizontal. Approximately,
    7·1 answer
  • Think of an animal that has a distinctive or unusual body shapes. Describe how its body shape helps its momentum and how momentu
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!